• Title/Summary/Keyword: Cascade heat exchanger

Search Result 30, Processing Time 0.023 seconds

Performance analysis of a R744 and R404A cascade refrigeration system with internal heat exchanger (내부 열교환기 부착 R744-R404A용 캐스케이드 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • This paper describes an analysis on performance of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporating and condensing temperature in the R744 low- and R404A high-temperature cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : COP of cascade refrigeration system increases with the increasing of compression efficiency, but decreases with the increasing temperature difference of cascade heat exchanger. Also, the COP increases with the increasing of internal heat exchanger efficiency in high-temperature cycle, but decreases with that in low-temperature cycle. Therefore, internal heat exchanger efficiency, compressor efficiency and temperature difference of cascade heat exchanger on R744-R404A cascade refrigeration system have an effect on the COP of this system.

Prediction on Performance of Cascade Refrigeration System using Alternative Freon Refrigerants (대체 프레온계 냉매를 이용하는 이원 냉동시스템의 성능예측)

  • Roh, Geonsang
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • In this paper, cycle performance analysis of cascade refrigeration system using alternative FREON refrigerants are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooled and superheated degree, and evaporating and condensing temperature, temperature difference of cascade heat exchanger in cascade refrigeration system. The COP of cascade refrigeration system increases with the increasing subcooled degree, but there is no significant changes with the increasing superheated degree. The COP of cascade refrigeration system depends on evaporating and condensing temperatures of cascade heat exchanger. Therefore, subcooled degree, evaporating and condensing temperature of cascade heat exchanger using alternative FREON refrigerants have an effect on the COP of this system. In this paper, COP of cascade refrigeration system using R23 for low temperature system and R507A for high temperature system is higher 8 ~ 29 % than using R13 for low temperature system and R22 for high temperature system.

The pressure drop characteristics in LNG heat exchanger of cryogenic cascade refrigeration cycle (초저온 캐스케이드 냉동사이클의 LNG 열교환기 압력강하 특성)

  • Yoon, J.I.;Choi, K.H.;Kwag, J.W.;Son, C.H.;Baek, S.M.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.376-381
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600th of its standard volume. This gives LNG the advantage in transportation. The pressure dorp of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work of cryogenic cascade liquefaction cycle.

  • PDF

Effect on Heat Exchangers Efficiency on Performance of Cryogenic Refrigeration Cycles (열교환기 효율이 초저온 냉동사이클 성능에 미치는 영향)

  • Yoon, Jung-In
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.58-63
    • /
    • 2013
  • This paper presents the new cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$. The performance of the cascade liquefaction cycles with respect to temperature differences in the LNG heat exchangers is analyzed using HYSYS software and then compared the performance of these cycles with phillips optimized cascade liquefaction cycle. The coefficient of performance of the new liquefaction cycles considered in this study decreases with the temperature differences in the LNG heat exchangers, but the compressor work, expander work and heat capacity in the LNG heat exchanger increases, respectively. From the comparison of performance of three cycles, the cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ showed the highest COP. And the cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In the view of performance, the optimized cascade liquefaction cycle using $C_3H_8-C_2H_4-C_1H_4$ yields much better COP. But, in the environment view, it is found that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ shows favorable characteristics.

Analysis of Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Natural Refrigerants (천연냉매를 사용하는 내부 열교환기 부착 캐스케이드 냉동시스템의 성능 특성 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1123-1128
    • /
    • 2009
  • In this paper, the cycle performance characteristics of a cascade refrigeration system with internal heat exchanger using natural refrigerants is presented to offer the basic design data for the operating parameters of the system. This system considered in this study is consisted of a high temperature cycle using a carbon dioxide(R744) and low temperature cycle using refrigerants such as R290, R1270, R600a and Ethane. The main results were summarized as follows : The COP of the cascade refrigeration system of R600a with internal heat exchanger is the highest grade in low temperature cycle using refrigerants such as R290, R1270, R600a and Ethane. The COP of the cascade refrigeration system with internal heat exchanger only in high temperature cycle is the highest value among three type cycle, such as only low temperature cycle, only high temperature cycle and all the cycle.

Characteristics of Cryogenic Cascade Refrigeration Cycle for Liquefaction of Natural Gas with the Pressure Drop of Heat Exchanger (LNG 열교환기의 압력강하에 따른 천연가스 액화용 초저온 캐스케이드 냉동사이클 특성)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kwag, Jin-Woo;Baek, Seung-Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.756-761
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600 of its standard volume. This gives LNG the advantage in transportation. In this study, the effects of the pressure drop of refrigerant and natural gas in the LNG heat exchanger of cryogenic cascade refrigeration cycle were investigated and then the design criteria for the pressure drop of refrigerant and natural gas of the LNG heat exchanger were proposed. The pressure drop of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work and COP of cryogenic cascade liquefaction cycle.

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

Performance Analysis of R404A Refrigeration System with Internal Heat Exchanger Using R744 as a Secondary Refrigerant (R744를 2차 냉매로 사용하는 내부열교환기 부착 R404A 냉동시스템의 성능 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yi, Wen-Bin;Jeon, Min-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.548-554
    • /
    • 2013
  • A thermodynamic analysis of the R404A refrigeration system with an internal heat exchanger using R744 as a secondary refrigerant is presented in this paper to optimize the design for operating parameters of the system. The main results are summarized as follows: The COP increases with increasing subcooling and superheating degree of R404A, internal heat exchanger and compression efficiency of the R404A cycle and evaporating temperature of the R744 cycle and decreasing temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle. The mass flow ratio decreases with increasing evaporating temperature of the R744 cycle and internal heat exchanger efficiency of the R404A cycle and decreasing subcooling and superheating degree of the R744 cycle, temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle.

Exergy Analysis of R744-R404A Cascade Refrigeration System (R744-R404A용 캐스케이드 냉동시스템의 엑서지 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1001-1008
    • /
    • 2011
  • This paper describes an analysis on performance and exergy of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R744 low- and R404A high- temperature cycle, respectively. The main results are summarized as follows : As the evaporation temperature of cascade heat exchanger increases, the COP of R404A high-temperature cycle increases. But the COP of R744 low-temperature cycle decreases, and the COP of total cascade cycle is almost constant. As cascade evaporation temperature increase, the exergy loss in the R404A condenser and the R744 internal heat exchanger is the largest and the lowest among all components, respectively. Therefore, the exergy loss in the condenser and compressor of R404A must be decreased to enhance the COP of R744-R404A cascade refrigeration system.

Prediction on Performance of Cascade Refrigeration System using Alternative Freon and Natural Refrigerants (대체 프레온 및 자연 냉매를 이용하는 이원 냉동시스템의 성능 예측)

  • Kim, Jong-Ryeol;Roh, Geon-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1427-1433
    • /
    • 2012
  • In this paper, cycle performance analysis of cascade refrigeration system using alternative FREON refrigerants and natural refrigerants are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooled and superheated degree, and condensing and evaporating temperature, temperature difference of cascade heat exchanger in cascade refrigeration system. The COP of cascade refrigeration system increases with the increasing subcooled degree, but there is no significant changes with the increasing superheated degree. The COP of cascade refrigeration system depends on evaporating and condensing temperatures of cascade heat exchanger. Therefore, subcooled degree, evaporating and condensing temperature of cascade heat exchanger using alternative FREON refrigerants and natural refrigerants have an effect on the COP of this system. In this paper, COP of cascade refrigeration system using (R23 / R290), (R23 / R600), (R23 / R600a), (R23 / R717), (R744 / R404A) are higher 20 ~ 36 % than (R23 / R22), using R23 for low temperature system and R22 for high temperature system.