• Title/Summary/Keyword: Cascade converter

Search Result 57, Processing Time 0.019 seconds

High Step-Up Cascade Boost DC-DC Converter Using Coupled Inductor with Ripple-Free Input Current (결합 인덕터를 이용한 입력 전류 리플이 없는 고승압 캐스케이드 부스트 DC-DC 컨버터)

  • Lee, Sin Woo;Do, Hyun Lark
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.428-429
    • /
    • 2018
  • 본 논문은 결합 인덕터를 이용한 입력 전류 리플이 없는 고승압 캐스케이드 부스트 DC-DC 컨버터를 제안한다. 기존 캐스케이드 부스트 컨버터의 단점을 보완하기 위해 제안되었다. 제안된 컨버터는 1차 부스트 단의 보조회로에 의해 입력 전류 리플이 상당히 제거되었으며 2차 부스트 단에 결합 인덕터를 적용하여 높은 전압 이득을 달성하였다. 제안된 컨버터는 이론적 해석과 200[V]-200[W]하드웨어 시작품을 제작하여 검증하였다.

  • PDF

Development of PV Module Integrated Type Low Voltage Battery Charger (MPPT 제어를 적용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Shin, Seung-Min;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.168-169
    • /
    • 2012
  • 본 논문에서는 Cascade Buck-Boost 컨버터를 사용한 모듈 직접형 컨버터 (Module Integrated Converter, MIC)를 이용하여 독립형으로 저전압 배터리를 충전할 수 있는 알고리즘을 제안하고 이를 검증한다. 제안한 알고리즘은 입력 조건의 변화를 고려하여 MPPT 충전 동작 및 Constant Current (CC) - Constant Voltage (CV) 제어를 수행할 수 있어 배터리를 항상 최대의 전력으로 충전할 수 있게 한다. 제안한 충전 장치는 150W급 PV Module을 사용하여, 98.4%의 고효율 획득 및 알고리즘 성능을 검증한다.

  • PDF

80kW SiC Bi-directional Converter using DC Droop Control in DC Nano-grid (DC Nano-grid에서 DC Droop Control을 적용한 80kW급 SiC 양방향 컨버터)

  • Park, Sungyoul;Kim, Yeonwoo;Kwon, Minho;Choi, Sewan;Jung, Sehyoung;Kim, Minkook;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.17-18
    • /
    • 2016
  • 본 논문에서는 DC droop control을 적용한 80kW급 SiC 양방향 컨버터를 제안한다. 시스템은 20kW 모듈 4개를 이용하는 모듈형 컨버터이며, 토폴로지는 넓은 입력전압 범위를 만족하기 위하여 Cascade 부스트-벅 컨버터 구조이다. 모듈 컨버터의 제어는 모듈 간 통신이 필요 없는 DC droop control에 부하분담과 전압 regulation 성능을 모두 향상시키기 위하여 Secondary control을 적용했다. 제안하는 시스템의 타당성을 검증하기 위하여 20kW급 시작품 2대 실험을 통해 병렬 운전을 검증하였으며, 14kW에서 최고 효율 98.9%를 달성하였다.

  • PDF

An analysis of non-isolated high voltage gain boost converter for MIC application (MIC용 비절연형 고승압 부스트 컨버터의 분석)

  • Hwang, Sun-hee;Kim, Jun-gu;Kim, Jae-Hyung;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.196-197
    • /
    • 2010
  • In same cases of grid connected system using photovoltaic modules, high boosting ratio is required for the converters. Four topologies based on conventional boost converters are implemented according to the voltage doubler and cascade methods. The topologies are analyzed and compared according to its boosting ratio and configurations. Consequently, the suitability of four topologies for MIC application is considered by simulation results.

  • PDF

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

Reduced Order Identification and Stability Analysis of DC-DC Converters

  • Ali, Husan;Zheng, Xiancheng;Wu, Xiaohua;Zaman, Haider;Khan, Shahbaz
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.453-463
    • /
    • 2017
  • This paper discusses the measurement of frequency response functions for various dc-dc converters. The frequency domain identification procedure is applied to the measured frequency responses. The identified transfer functions are primarily used in developing behavioral models for dc-dc converters. Distributed power systems are based upon such converters in cascade, parallel and several other configurations. The system level analysis of a complete system becomes complex when the identified transfer functions are of high order. Therefore, a certain technique needs to be applied for order reduction of the identified transfer functions. During the process of order reduction, it has to be ensured that the system retains the dynamics of the full order system. The technique used here is based on the Hankel singular values of a system. A systematic procedure is given to retain the maximum energy states for the reduced order model. A dynamic analysis is performed for behavioral models based on full and reduced order frequency responses. The close agreement of results validates the effectiveness of the model order reduction. Stability is the key design objective for any system designer. Therefore, the measured frequency responses at the interface of the source and load are also used to predict stability of the system.

An Improved Switching Topology for Single Phase Multilevel Inverter with Capacitor Voltage Balancing Technique

  • Ponnusamy, Rajan Soundar;Subramaniam, Manoharan;Irudayaraj, Gerald Christopher Raj;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.115-126
    • /
    • 2017
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a reduced number of isolated DC sources and power semiconductor switches. The proposed inverter has only two H-bridges connected in cascade, one switching at a high frequency and the other switching at a low frequency. The Low Switching Frequency Inverter (LSFI) generates seven levels whereas the High Switching Frequency Inverter (HSFI) generates only two levels. This paper also presents a solution to the capacitor balancing issues of the LSFI. The proposed inverter has lot of advantages such as reductions in the number of DC sources, switching losses, power electronic devices, size and cost. The proposed inverter with a capacitor voltage balancing algorithm is simulated using MATLAB/SIMULINK. The switching logic of the proposed inverter with a capacitor voltage balancing algorithm is developed using a FPGA SPATRAN 3A DSP board. A laboratory prototype is built to validate the simulation results.