군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 본 논문에서는 SVM을 여러 개 이용한 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화학습을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 Cascade SVM을 기반으로 한 강화학습의 특성을 이용한 선택 교배방법을 채택하였다.
This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.
Automatic modulation classification is essential in radar emitter identification. We propose a cascade classifier by combining a support vector machine (SVM) and convolutional neural network (CNN), considering that noise might be taken as radar signals. First, the SVM distinguishes noise signals by the main ridge slice feature of signals. Second, the complex envelope features of the predicted radar signals are extracted and placed into a designed CNN, where a modulation classification task is performed. Simulation results show that the SVM-CNN can effectively distinguish radar signals from noise. The overall probability of successful recognition (PSR) of modulation is 98.52% at 20 dB and 82.27% at -2 dB with low computation costs. Furthermore, we found that the accuracy of intermediate frequency estimation significantly affects the PSR. This study shows the possibility of training a classifier using complex envelope features. What the proposed CNN has learned can be interpreted as an equivalent matched filter consisting of a series of small filters that can provide different responses determined by envelope features.
In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.
본 연구는 한국어 의존 구조를 결정하는 단계적 의존 구조 분석기를 제안한다. 각 단계에서는 주어진 문법관계의 후보열에서 올바른 문법관계를 결정하는데, 대상문법관계의 종류에 따라 독립적으로 수행된다. 문법관계의 후보열은 미리 학습된 지지벡터기계를 이용하여 주어, 목적어, 보어, 부사어 등 7가지의 문법관계로 추정한다. 각 단계에서는 지지벡터기계 분류기와 어절 간의 거리, 교차 구조 금지, 격 제한의 원칙 등의 한국어 언어 특성을 이용하여 대상문법관계를 결정하며, 모든 단계를 거쳐 최종적으로 전체 의존 구조와 문법관계가 결정된다. 트리 및 문법관계 부착 말뭉치를 이용하여 제안된 시스템을 구현 및 실험하였으며 약 85.7%의 정확률을 얻었다.
앙상블 분류기는 여러 개의 분류기에서의 예측 결과를 결합함으로써 단일 분류기에 비해 신뢰성 높은 예측 결과를 얻을 수 있는 방법으로 널리 사용되고 있다. 앙상블 분류기를 위해서는 여러 가지 방법이 사용되고 있으며 흔히 사용되는 방법으로는 부스팅이 있다. 하지만 부스팅은 단계적인 학습을 통해 이전 단계에서 잘못 분류된 샘플들을 다음 단계에서 다시 분류하는 방식으로 이전 단계로의 피드백이 불완전한 순차적인 방법이라는 한계가 있다. 이 논문에서는 단일 분류기 중 가장 성능이 좋은 것으로 알려진 SVM을 기본분류기로 사용하여 동시에 여러개의 SVM을 학습하는 문맥 감지형 SVM 앙상블알고리즘을 제안한다. 제안하는 방법에서는 특징 공간을 문맥으로 나누는 클러스터링과 SVM 학습을 동시에 진행하므로 특징 공간 분할과 학습이 서로의 결과를 사용할 수 있어 기존 앙상블학습에 비해 더 나은 결과를 얻을 수 있으며 이는 실험 결과를 통해 확인할 수 있다.
최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.
본 논문에서는 점증적 분류 성능을 갖는 단계형(cascade) 분류기를 이용한 새로운 실시간 얼굴 탐지시스템을 제안하고자 한다. 제안된 시스템의 첫 단계는 전처리 단계로써 매우 빠른 속도를 갖는 새로운 피부색 탐지기를 이용하여 탐색 공간을 대폭 축소하고, 두 번째 단계에서는 빠른 분류가 가능한 유사-하(Haar-like) 특징을 이용한 단계형 분류기를 배치하여 빠른 속도로 후보 얼굴을 검출한다. 마지막 단계에서는 탐지율을 높이기 위해 단일 클래스 SVM인 SVDD를 분류기로 사용하였으며, 실험을 통하여 제안된 시스템의 우수성을 보인다.
Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
한국멀티미디어학회논문지
/
제18권11호
/
pp.1289-1301
/
2015
Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.
사물인터넷이 4차 산업혁명을 주도할 새로운 기술로 각광받고 있으며, 이미 많은 기술과 제품들이 발표되어 인간의 삶의 질을 높이는 데 많은 기여를 하고 있다. 본 논문에서는 건물의 엘리베이터 등에서 얼굴 검출 및 얼굴 인식에 사용할 수 있는 시스템을 개발한다. 얼굴 검출 시스템은 하르 직렬 분류기를 사용하며, 얼굴 인식 시스템에는 수행 시간을 줄이기 위하여 본 논문에서 파이썬 언어로 구현된 주성분 분석(PCA)이 얼굴 인식을 위한 고유 얼굴(eigenface) 계산에 사용된다. 데이터베이스에 저장된 얼굴과 얼굴 검출 시스템의 결과로부터 얼굴을 인식하기 위하여 SVM 또는 유크리디안 측정이 사용된다. 제안된 시스템은 OpenCV를 사용하여 라즈베리파이 3에 구현된다. 본 논문에서 구현된 주성분 프로그램의 성능을 구하기 위하여 기존의 주성분 프로그램과 비교하여 얼굴 인식율과 수행시간을 비교하였다. 성능 평가를 위하여 ORL 얼굴 데이터베이스에서 40명의 얼굴에 대하여 각각 10 개의 이미지를 이용하여 학습에 200, 테스트에 200개의 이미지를 사용하였다. 본 논문에서 제안된 PCA와 유클리디안 측정을 이용한 경우 약 93%, SVM의 경우 약 96% 이상의 얼굴 인식률을 얻었다. 그러나 수행시간은 본 논문에서 구현된 PCA를 사용할 경우 약 0.11초, 기존 PCA의 경우 약 1.1초로 약 1/10로 수행 시간을 줄일 수 있었다. 그러므로 본 논문에서 개발된 시스템은 실시간 결과가 필요한 보안 시스템, 엘리베이터 모니터링 시스템 등에 적용할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.