• 제목/요약/키워드: Cascade SVM

검색결과 15건 처리시간 0.02초

Q-learning과 Cascade SVM을 이용한 군집로봇의 행동학습 및 진화 (Behavior Learning and Evolution of Swarm Robot System using Q-learning and Cascade SVM)

  • 서상욱;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.279-284
    • /
    • 2009
  • 군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 본 논문에서는 SVM을 여러 개 이용한 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화학습을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 Cascade SVM을 기반으로 한 강화학습의 특성을 이용한 선택 교배방법을 채택하였다.

다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘 (Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM)

  • 서상욱;양현창;심귀보
    • 대한임베디드공학회논문지
    • /
    • 제3권2호
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF

Automatic modulation classification of noise-like radar intrapulse signals using cascade classifier

  • Meng, Xianpeng;Shang, Chaoxuan;Dong, Jian;Fu, Xiongjun;Lang, Ping
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.991-1003
    • /
    • 2021
  • Automatic modulation classification is essential in radar emitter identification. We propose a cascade classifier by combining a support vector machine (SVM) and convolutional neural network (CNN), considering that noise might be taken as radar signals. First, the SVM distinguishes noise signals by the main ridge slice feature of signals. Second, the complex envelope features of the predicted radar signals are extracted and placed into a designed CNN, where a modulation classification task is performed. Simulation results show that the SVM-CNN can effectively distinguish radar signals from noise. The overall probability of successful recognition (PSR) of modulation is 98.52% at 20 dB and 82.27% at -2 dB with low computation costs. Furthermore, we found that the accuracy of intermediate frequency estimation significantly affects the PSR. This study shows the possibility of training a classifier using complex envelope features. What the proposed CNN has learned can be interpreted as an equivalent matched filter consisting of a series of small filters that can provide different responses determined by envelope features.

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

문법관계 정보를 이용한 단계적 한국어 구문 분석 (Cascaded Parsing Korean Sentences Using Grammatical Relations)

  • 이성욱
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.69-72
    • /
    • 2008
  • 본 연구는 한국어 의존 구조를 결정하는 단계적 의존 구조 분석기를 제안한다. 각 단계에서는 주어진 문법관계의 후보열에서 올바른 문법관계를 결정하는데, 대상문법관계의 종류에 따라 독립적으로 수행된다. 문법관계의 후보열은 미리 학습된 지지벡터기계를 이용하여 주어, 목적어, 보어, 부사어 등 7가지의 문법관계로 추정한다. 각 단계에서는 지지벡터기계 분류기와 어절 간의 거리, 교차 구조 금지, 격 제한의 원칙 등의 한국어 언어 특성을 이용하여 대상문법관계를 결정하며, 모든 단계를 거쳐 최종적으로 전체 의존 구조와 문법관계가 결정된다. 트리 및 문법관계 부착 말뭉치를 이용하여 제안된 시스템을 구현 및 실험하였으며 약 85.7%의 정확률을 얻었다.

Support Vector Machine을 이용한 문맥 인지형 융합 (Context-Aware Fusion with Support Vector Machine)

  • 허경용;김성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.19-26
    • /
    • 2014
  • 앙상블 분류기는 여러 개의 분류기에서의 예측 결과를 결합함으로써 단일 분류기에 비해 신뢰성 높은 예측 결과를 얻을 수 있는 방법으로 널리 사용되고 있다. 앙상블 분류기를 위해서는 여러 가지 방법이 사용되고 있으며 흔히 사용되는 방법으로는 부스팅이 있다. 하지만 부스팅은 단계적인 학습을 통해 이전 단계에서 잘못 분류된 샘플들을 다음 단계에서 다시 분류하는 방식으로 이전 단계로의 피드백이 불완전한 순차적인 방법이라는 한계가 있다. 이 논문에서는 단일 분류기 중 가장 성능이 좋은 것으로 알려진 SVM을 기본분류기로 사용하여 동시에 여러개의 SVM을 학습하는 문맥 감지형 SVM 앙상블알고리즘을 제안한다. 제안하는 방법에서는 특징 공간을 문맥으로 나누는 클러스터링과 SVM 학습을 동시에 진행하므로 특징 공간 분할과 학습이 서로의 결과를 사용할 수 있어 기존 앙상블학습에 비해 더 나은 결과를 얻을 수 있으며 이는 실험 결과를 통해 확인할 수 있다.

표정 분류 연구 (Analysis of facial expression recognition)

  • 손나영;조현선;이소현;송종우
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.539-554
    • /
    • 2018
  • 최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.

단계형 구조와 SVDD를 이용한 실시간 얼굴 탐지 시스템 (Real-time Face Detection System using Cascade structure and SVDD)

  • 송지영;이한성;임영희;박대희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.763-765
    • /
    • 2005
  • 본 논문에서는 점증적 분류 성능을 갖는 단계형(cascade) 분류기를 이용한 새로운 실시간 얼굴 탐지시스템을 제안하고자 한다. 제안된 시스템의 첫 단계는 전처리 단계로써 매우 빠른 속도를 갖는 새로운 피부색 탐지기를 이용하여 탐색 공간을 대폭 축소하고, 두 번째 단계에서는 빠른 분류가 가능한 유사-하(Haar-like) 특징을 이용한 단계형 분류기를 배치하여 빠른 속도로 후보 얼굴을 검출한다. 마지막 단계에서는 탐지율을 높이기 위해 단일 클래스 SVM인 SVDD를 분류기로 사용하였으며, 실험을 통하여 제안된 시스템의 우수성을 보인다.

  • PDF

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.

라즈베리파이를 이용한 얼굴검출 및 인식 시스템 개발 (Development of a Face Detection and Recognition System Using a RaspberryPi)

  • 김강철
    • 한국전자통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.859-864
    • /
    • 2017
  • 사물인터넷이 4차 산업혁명을 주도할 새로운 기술로 각광받고 있으며, 이미 많은 기술과 제품들이 발표되어 인간의 삶의 질을 높이는 데 많은 기여를 하고 있다. 본 논문에서는 건물의 엘리베이터 등에서 얼굴 검출 및 얼굴 인식에 사용할 수 있는 시스템을 개발한다. 얼굴 검출 시스템은 하르 직렬 분류기를 사용하며, 얼굴 인식 시스템에는 수행 시간을 줄이기 위하여 본 논문에서 파이썬 언어로 구현된 주성분 분석(PCA)이 얼굴 인식을 위한 고유 얼굴(eigenface) 계산에 사용된다. 데이터베이스에 저장된 얼굴과 얼굴 검출 시스템의 결과로부터 얼굴을 인식하기 위하여 SVM 또는 유크리디안 측정이 사용된다. 제안된 시스템은 OpenCV를 사용하여 라즈베리파이 3에 구현된다. 본 논문에서 구현된 주성분 프로그램의 성능을 구하기 위하여 기존의 주성분 프로그램과 비교하여 얼굴 인식율과 수행시간을 비교하였다. 성능 평가를 위하여 ORL 얼굴 데이터베이스에서 40명의 얼굴에 대하여 각각 10 개의 이미지를 이용하여 학습에 200, 테스트에 200개의 이미지를 사용하였다. 본 논문에서 제안된 PCA와 유클리디안 측정을 이용한 경우 약 93%, SVM의 경우 약 96% 이상의 얼굴 인식률을 얻었다. 그러나 수행시간은 본 논문에서 구현된 PCA를 사용할 경우 약 0.11초, 기존 PCA의 경우 약 1.1초로 약 1/10로 수행 시간을 줄일 수 있었다. 그러므로 본 논문에서 개발된 시스템은 실시간 결과가 필요한 보안 시스템, 엘리베이터 모니터링 시스템 등에 적용할 수 있을 것으로 기대된다.