• Title/Summary/Keyword: Cascade Control System

Search Result 124, Processing Time 0.035 seconds

Multi-modulating Pattern - A Unified Carrier based PWM method In Multi-level Inverter - Part 2

  • Nho Nguyen Van;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.625-629
    • /
    • 2004
  • This paper presents a systematical approach to study carrier based PWM techniques (CPWM) in diode-clamped and cascade multilevel inverters by using a proposed named multi-modulating pattern method. This method is based on the vector correlation between CPWM and the space vector PWM (SVPWM) and applicable to both multilevel inverter topologies. A CPWM technique can be described in a general mathematical equation, and obtain the same outputs similarly as of the corresponding SVPWM. Control of the fundamental voltage, vector redundancies and phase redundancies in multilevel inverter can be formulated separately in the CPWM equation. The deduced CPWM can obtain the full vector redundancy control, and fully utilize phase redundancy in a cascade inverter In this continued part, it will be deduced correlation between CPWM equations in multi-carrier system and single carrier system, present the mathematical model of voltage source inverter related to the common mode voltage and propose a general algorithm for multi-modulating modulator. The obtained theory will be demonstrated by simulation results.

  • PDF

On-line Frequency Estimation Based on Cascade Adaptive Notch Filter and Application to Active Noise Control

  • Kim, Sunmin;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.81-84
    • /
    • 1998
  • For ANC systems applied to aircrafts or passenger ships, engines from which reference signals are usually measured are located so far from seats where main part of controllers are placed. It can make feedforward ANC scheme difficult to implement or very costly. Feedback ANC algorithms which do not require reference signals and use error signals alone to update the filter, are usually sensitive to measurement noise ' and impulse noise. In this paper, reference signal needed for the feedforward control is not measured directly but generated with the estimated frequencies. Cascade adaptive notch filter (ANF), which has the low computational burden, is used to implement ANC system in real time. Several ANFs of order 2 are connected in series to estimate multiple sinusoids. Computer simulations and experiments in the laboratory for verifying efficacy of the proposed algorithm are carried out.

  • PDF

Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

  • Kwon, Oh-Seol
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

A Study on the Temperature Control of a TV-Glass Melting Furnace Using the Conventional Advanced Control (고전고급제어(Conventional Advanced Control)를 이용한 TV 브라운관 유리 용해로의 온도제어에 관한 연구)

  • Moon, Un-Chul;Kim, Heung-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.822-830
    • /
    • 2000
  • A conventional advanced control algorithm is proposed in this paper for improved temperature regulation of a TV-glass melting furnace. The TV-Glass melting furnace is a typical MIMO(Multi-Input Multi Output) system which is subject to various thermal disturbances. Because of its complexity, a detailed mathematical model of the furnace is hard to establish. To design a temperature control control system of the furnace, major input-output variables are selected first, and simple FOPDT(First Order Plus Dead Time) models are established based on the physical meaning and experimental process data. Based on the FOPDT models, a multi-loop control system composed of cascade and single loops are designed for effective control of the MIMO system. Practical implementation on the 150 ton/day furnace using the DCS(Distributed Control System) showed that the proposed control technique performs better than manual control.

  • PDF

Velocity Control of Permanent Magnet Synchronous Motors using Model Predictive and Sliding Mode Cascade Controller (슬라이딩 모드 및 모델 예측 직렬형 제어기를 이용한 영구자석형 동기전동기의 속도제어)

  • Lee, Ilro;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.801-806
    • /
    • 2015
  • In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

Estimation of Wind Turbine Power Generation using Cascade Architectures of Fuzzy-Neural Networks (종속형 퍼지-뉴럴 네트워크를 이용한 풍력발전기 출력 예측)

  • Kim, Seong-Min;Lee, Dong-Hoon;Jang, Jong-In;Won, Jung-Cheol;Kang, Tae-Ho;Yim, Yeong-Keun;Han, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1098_1099
    • /
    • 2009
  • In this paper, we present the estimation of wind turbine power generation using Cascade Architectures of Fuzzy Neural Networks(CAFNN). The proposed model uses the wind speed average, the standard deviation and the past output power as input data. The CAFNN identification process uses a 10-min average wind speed with its standard deviation. The method for rule-based fuzzy modeling uses Gaussian membership function. It has three fuzzy variables with three modifiable parameters. The CAFNN's configuration has three Logic Processors(LP) that are constructed cascade architecture and an effective optimization method uses two-level genetic algorithm. First, The CAFNN is trained with one-day average input variables. Once the CAFNN has been trained, test data are used without any update. The main advantage of using CAFNN is having simple structure of system with many input variables. Therefore, The proposed CAFNN technique is useful to predict the wind turbine(WT) power effectively and hence that information will be helpful to decide the control strategy for the WT system operation and application.

  • PDF

Novel Switching Strategy of 1MVar STATCON using Cascade Multilevel Voltage Source Inverter for FACTS Application (FACTS 적용을 위한 직렬형 멀티레벨 전압형 인버터를 사용한 1MVar STATCON의 새로운 스위칭기법)

  • Min, Wan-Gi;Min, Jun-Gi;Choe, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.691-700
    • /
    • 1999
  • This paper proposes a novel switching strategy of 1Mvar STATCON using cascade multilevel H-bridge inverter(HBI) for FACTS application. To control the reactive power instantaneously, the d-q dynamic system model is described and analyzed. A single pulse pattern based on the SHEM(Selective Harmonic Elimination Method) technique is determined from the look-up table to reduce the line current harmonics and a rotating fundamental frequency switching scheme is presented to adjust the DC voltage of each inverter capacitor at the same value. So the voltage unbalance problem between separately DC bus voltage is improved by using the proposed switching scheme. As a result, the presented inverter configuration not only reduces the system complexity by eliminating the isolation at the AC input side transformer but also improves the dynamic response to the step change of reactive power.

  • PDF

Modeling and Analysis of Cascade Multilevel PWM Rectifier Using Circuit DQ Transformation

  • Park, Nam-Sup
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • This paper presents a cascade multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules. The features and advantages of the proposed PWM rectifier can be summarized as follows; I) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses.