• 제목/요약/키워드: Cartilage regeneration

검색결과 76건 처리시간 0.026초

의이인탕(薏苡仁湯)의 항산화, 항염증 및 연골재생 효과 (Antioxidant, Anti-inflammatory and Cartilage Regeneration Effects of Euiiin-tang)

  • 박홍탁;김영준;손우석;우창훈
    • 한방재활의학과학회지
    • /
    • 제33권3호
    • /
    • pp.17-32
    • /
    • 2023
  • Objectives The purpose of this study was to investigate the antioxidant, anti-inflammatory and cartilage regeneration effects of Euiiin-tang water extract (EIIT) in the treatment of monosodium iodoacetate (MIA)-induced osteoarthritis in rats. Methods Animal models were divided into five groups. The normal group didn't do any treatments causing osteoarthritis. The control group was orally administerd distilled water instead of the drug, the positive control group used indomethacin 5 mg/kg, the EIIT 100 group used EIIT 100 mg/kg and the EIIT 200 group used EIIT 200 mg/kg, and seven rats were placed per group. We administered drug to rats for 2 weeks and analyzed oxidative stress-related proteins in joint tissue. Inflammation mediators and inflammatory cytokines induced by the activity of inflammation-related proteins were analyzed. In addition, the expression of anti-inflammatory cytokines and collagen-related factors were analyzed, and H&E staining and Safranin-O staining were performed to see the effect on histopathological changes. Results 1) Oxidative stress-related proteins were significantly reduced. 2) Inflammationrelated proteins, inflammatory mediators and inflammatory cytokines were significantly reduced. 3) Anti-inflammatory cytokines were significantly increased. 4) Collagen proteolysis factors significantly decreased, and collagen degradation inhibitory factor was significantly increased. 5) EIIT administration significantly reduced cartilage degeneration and deformation in H&E staining, and reduced proteoglycan destruction in Safranin-O staining. Conclusions From the above experimental results, it judges that Euiiin-tang has antioxidant, anti-inflammatory, and cartilage regeneration effects on osteoarthritis in rats induced by MIA.

흰쥐 슬관절 고정 후 초음파 적용이 관절연골내 HSP70의 발현에 미치는 영향 (The Effects of Ultrasound Irradiation on the Heat Shock Protein 70(HSP70) Expression in Rat Knee Articular Cartilage after Immobilization)

  • 남기원
    • The Journal of Korean Physical Therapy
    • /
    • 제17권3호
    • /
    • pp.369-376
    • /
    • 2005
  • The purpose of the study was for investigating the effect of therapeutic ultrasound irradiation on HSP70 expression in knee of degraded rat articular cartilage. Knee of ten Sprague-Dawley male rats were immobilized for 4 weeks and divided at random into the control and continuous ultrasound applicated group. The continuous ultrasound applicated group was irradiated with frequency 1MHz, intensity $1W/cm^2$ for 5 minutes. The control group was sham sonication. The immunoreactivity of HSP70 was increased in degraded articular cartilage after untrasound irradiation. These results suggest that therapeutic ultrasound can enhance HSP70 expression in degraded articular cartilage.

  • PDF

골수강내 혈관성 근피판 이식이 동결 건조후 자가 이식된 관절연골의 재생에 미치는 효과 (Effects of Intramedullary Vascularized Muscle Flap in Regeneration of Lyophilized, Autografted Humeral Head in Rabbits)

  • 이승구;김성태;박진일
    • Archives of Reconstructive Microsurgery
    • /
    • 제9권2호
    • /
    • pp.139-146
    • /
    • 2000
  • The aim of this study was to assess whether the functional regeneration of a lyophilized autografted cartilage could be improved by implanting a vascularized muscle flap into the medullary canal of autografted proximal humerus. A hemijoint reconstruction using a lyophilized osteochondral autograft in proximal humerus was done in 4 rabbits for control, and combined with an vascularized intramedullary muscle flap in another 4 rabbits for the experimental group. Graft healing and the repair process of osteochondral graft were followed by serial radiographs and histologic changes for 9 weeks after experiments. Each two rabbits in control and in experimental group on 5th and 9th week after implantation of hemijoint were sacrified. The results were as follows: 1. All of control and experimental froups on 5th week united solidly on osteotomized site radiologically, but their articular cartilages were destroyed more seriously in the control than that in experimental group with muscle flap on 5th and 9th week after experiment... 2. Histochemically, the cartilage surface are completely destroyed and revealed with severe osteoarthritic changes on all cartilage layers in control, but cartilaginous erosions are mild to moderate and their arthritic changes are also mild with somewhat regeneration of chondrocytes on deep layers more prominetly on 9th week of the experimental group. 3. The amount of collagen and protenized matrix which was determined by Masson-Trichrome stain was markedly decreased that means the weakness of bony strength and low osteogenic potential in lyophilized cartilage. These results suggest that an intramedullary vascularized muscle flap can improve the functional results of lyophilized osteochondral autograft by providing both increased vascularity and populations of mesenchymal cells to initiate new bone formation on osteotomized site as well as the regeneration of deep layers in articular cartilage. In clinical relevances, this lyophilized hemijoint autograft combined with an intramedullary vascularized muscle pedicle graft might be used very effectively for the treatment of malignant long bone tumors to preserve the joint functions, all or partly, and so to replace it with the artificial joint after tumor excision and hemijoint autograft.

  • PDF

배양연골막이 피복된 고효능 인공연골의 생체내 효과 (The Effect of Cultured Perichondrial Cell Sheet Covered Highly Active Engineered Cartilage: in vivo Comparative Assessment)

  • 박세일;문영미;정재호;장광호;안면환
    • 한국임상수의학회지
    • /
    • 제28권5호
    • /
    • pp.486-496
    • /
    • 2011
  • 조직공학적 인공연골재생에 대한 관심이 증가함에 따라 많은 연구들이 활발히 수행되고 있으나 임상적인 적용의 한계를 극복하기위한 고효능을 보유한 양질의 연골조직생산의 필요성이 증가되고 있다. 인공연골은 자연연골과는 달리 '연골막(perichondrium)'을 포함하고 있지 않기 때문에 장기간 생체 내에 삽입된 후에 서서히 흡수 또는 변형으로 임상적 활용에 한계가 있다고 있다. 이에 본 연구는 양질의 연골조직생산을 목적으로, 세포판 제작기법(cell sheet engineering technique) 을 기반으로 한 인체유래의 배양 연골막(cultured perichondrium)을 이용하여 만든 인공연골막 세포판(cultured perichondrial cell sheet)의 생체 내 특성을 비교 분석하고, 배양된 연골막을 피복하여 고효능화를 유도한 인공연골복합체의 생체내 재생효능 및 조직특성을 비교 평가하고자 하였다. 본 연구에서는 Athymic nude mouse의 피하이식모델(study 1, n = 12)을 이용하여 담체로 hydrogel을 이용한 배양연골막 복합체의 생체내 효능을 분석하였고, 중대형동물의 대량연골 결손시의 재생효능을 평가하기 위하여 개의 무릎연골에 $1{\times}2cm$의 대량연골 결손모델(study 2, n = 12)을 통하여 인공배양세포판을 이식하였다. 이식12주 후 이식편을 회수하여 생화학, 분자생물학 및 면역조직학 분석을 시행한 결과, 배양연골막 복합체의 생체내 효능이 단독이식군에 비해 변형이나 과증식 없이 우수한 결과를 나타내었다. 본 연구의 결과로 토대로 배양연골막을 피복한 인공연골막의 관절내 효과를 규명하여 실제 임상적용을 조기화하는 기반을 제공하고 인공연골의 문제점이었던 변형과 흡수를 줄인 고효능 인공연골 제작기법을 제공하는데 유용할 것으로 기대된다.

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • 제54권7호
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

토끼 기관에 이식한 혈행성 연골막-구강점막 복합피판의 형태학적 연구 : III. 면역조직화학적 연구 (Morphologic Study on a Vascularized Composite Flap for Tracheal Reconstruction in Rabbit:III. Immunohistochemical Study)

  • 김은서
    • 대한기관식도과학회지
    • /
    • 제3권2호
    • /
    • pp.253-260
    • /
    • 1997
  • Successful regeneration of a cartilage framework using perichondrium has been reported by several authors but there are some arguments surrounding mucosal regeneration. Some authors report that regeneration of mucosa is completed by ingrowth from neighboring tissue but others insist that it occurs via metaplasia from the squamous epithelium. This study was designed to investigate the differences, especially in mucosal regeneration between nonvascularized and vascularized flaps via immunohistochemical study. A morphologic study was carried out to elucidate the characteristics o( the regenerated mucosa which was sutured on the vascularized perichondrium and fabricated in a rabbit ear. A nonvascularized perichondrial-mucosal composite flap with the same dimension was transferred in the control group. BrdU was labelled on both normal mucosa and grafted mucosa in the experimental group without my statistically significant differences. In cytokeratin stain, it was regarded that mucosal coverage of the control group occurred by ingrowth from the neighboring mucosa. It can be conceived that metaplasia of the grafted mucosa occurs in a vascularized composite flap transferred group.

  • PDF

In vitro Cartilage Regeneration using Primary Chondrocytes Cultured within Porous Poly(lactide-co-glycolide) Scaffolds

  • 윤준진;고예정;백정환;박태관
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.421-424
    • /
    • 2000
  • Cartilage injuries are frequent nowadays. The previous surgical treatment of cartilage defect was limited. Another approach in the treatment of cartilage injuries is the use of reconstitute cartilage consisting of chondrocytes cultured in suitable biodegradable scaffolds. Current studies have demonstrated the compatibility of chondrocytes with different biomaterials and the chondrogenesis in various types of porous scaffolds. The cell ingrowth into the porous scaffolds is modulated by initial cell loading efficiency. Therefore, well-interconnected pore structure and even pore distribution of the scaffolds are essential for efficient cell seeding. According to our previous work, well-interconnected macroporous scaffolds can be prepared by gas-foaming/salt-leaching method using ammonium bicarbonate salt as porogen additives. In this work, primary chondrocytes were cultured in PLGA 65/35 scaffolds fabricated by using our method. Cells seeded in the scaffolds showed well distribution by agitated seeding method. Histochemical staining of proteoglycans present in the scaffolds was used to visualize the chondrocyte ingrowth in the scaffolds. At 3 weeks, the population of chondrocytes was increased for the most part of the scaffolds, and extra cellular matrix (ECM) secretion was increased as culture periods progressed.

  • PDF

Regeneration of a Cartilage Tissue by In Vitro Culture of Chondrocytes on PLGA Microspheres

  • Son, Jeong-Hwa;Park, So-Ra;Kim, Hyeon-Joo;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1577-1582
    • /
    • 2006
  • Cartilage tissue engineering has emerged as an alternative approach for reconstruction or repair of injured cartilage tissues. In this study, rabbit chondrocytes were cultured in a three-dimensional environment to fabricate a new cartilaginous tissue with the application of tissue engineering strategies based on biodegradable PLGA microspheres. Chondrocytes were seeded on PLGA microspheres and cultured on a rocking platform for 5 weeks. The PLGA microspheres provided more surface area to adhere chondrocytes compared with PLGA sponge scaffolds. The novel system facilitated uniform distribution of the cells on the whole of the PLGA microspheres, thus forming a new cartilaginous construct at 4 weeks of culture. The histological and immunohistochemical analyses verified that the number of chondrocytes and the amount of extracellular matrix components such as proteoglycans and type II collagen were significantly greater on the PLGA microspheres constructs as compared with those on the PLGA sponge scaffolds. Therefore, PLGA microspheres enhanced the function of chondrocytes compared with PLGA sponge scaffolds, and thus might be useful for formation of cartilage tissue in vitro.

Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model

  • Lee, Mun-Hoe;Kim, Hyeong-Min;Chung, Hee-Chul;Kim, Do-Un;Lee, Jin-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1401-1408
    • /
    • 2021
  • This study examined whether the oral administration of low-molecular-weight collagen peptide (LMCP) containing 3% Gly-Pro-Hyp with >15% tripeptide (Gly-X-Y) content could ameliorate osteoarthritis (OA) progression using a rabbit anterior cruciate ligament transection (ACLT) model of induced OA and chondrocytes isolated from a patient with OA. Oral LMCP administration (100 or 200 mg/kg/day) for 12 weeks ameliorated cartilage damage and reduced the loss of proteoglycan compared to the findings in the ACLT control group, resulting in dose-dependent (p < 0.05) improvements of the OARSI score in hematoxylin & eosin (H&E) and Safranin O staining. In micro-computed tomography analysis, LMCP also significantly (p < 0.05) suppressed the deterioration of the microstructure in tibial subchondral bone during OA progression. The elevation of IL-1β and IL-6 concentrations in synovial fluid following OA induction was dose-dependently (p < 0.05) reduced by LMCP treatment. Furthermore, immunohistochemistry illustrated that LMCP significantly (p < 0.05) upregulated type II collagen and downregulated matrix metalloproteinase-13 in cartilage tissue. Consistent with the in vivo results, LMCP significantly (p < 0.05) increased the mRNA expression of COL2A1 and ACAN in chondrocytes isolated from a patient with OA regardless of the conditions for IL-1β induction. These findings suggest that LMCP has potential as a therapeutic treatment for OA that stimulates cartilage regeneration.