• 제목/요약/키워드: Cartesian-가상경계 혼합법

검색결과 3건 처리시간 0.016초

3차원 HCIB법을 이용한 회전하면서 변형하는 날개 주위 유동해석 (Numerical Simulation of Flow Field Around a Rotating Flexible Foil Using the 3D HCIB Method)

  • 신상묵;노인식
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.379-388
    • /
    • 2008
  • A hybrid Cartesian/immersed boundary code is expanded to simulate flow field around a three-dimensional body which undergoes large dynamic deformation. Immersed boundary nodes are automatically distributed based on the edges crossing triangles on body boundary. Velocity vectors are reconstructed at those immersed boundary nodes along local normal lines to the boundary. The reconstruction of pressure is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other results on laminar flow over a sphere. The code is applied to simulate flow around a foil which is attached to a body of revolution and rotates under periodic deformation. The periodic variation of the tip vortex is observed and the effects of the deformation on hydrodynamic force acting on the body are investigated.

선회하는 2차원 유연 날개의 유체-구조 상호작용 모사 (NUMERICAL SIMULATION ON FLUID-STRUCTURE INTERACTION OF A TWO-DIMENSIONAL ORBITING FLEXIBLE FOIL)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.37-45
    • /
    • 2007
  • The hybrid Cartesian/immersed boundary method is applied to simulate fluid-structure interaction of a two-dimensional orbiting flexible foil. The elastic deformation of the flexible foil is modelled based on the dynamic equation of a thin-plate. At each time step, the locations and velocities of the Lagrangian control points on the flexible foil are used to reconstruct the boundary conditions for the flow solver based on the hybrid staggered/non-staggered grid. To test the developed code, the flow fields around a flapping elliptical wing are calculated. The time history of the vertical force component and the evolution of the vorticity fields are compared with recent other computations and good agreement is achieved. For the orbiting flexible foil, the vorticity fields are compared with those of the case without the deformation. The combined effects of the angle of attack and the orbit on the deformation are investigated. The grid independency study is carried out for the computed time history of the deformation at the tip.

HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석 (COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.