• Title/Summary/Keyword: Cartesian mesh

Search Result 40, Processing Time 0.02 seconds

Development of the CFD Program for the Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 위한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, J.C.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.30-32
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. This technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increase.

  • PDF

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Development of a New Simulation Method of Casting Process Based on a Cylindrical Coordinate System (원통좌표를 이용한 주조공정의 수치해석모델 개발)

  • Mok, Jin-Ho;Park, Seong-Joon;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.433-440
    • /
    • 2004
  • Since the numerical analysis was adopted in the mold design, lots of computational methods have been proposed for the simulations of casting processes for the various shaped molds. Today, it is possible to simulate the filling and solidification processes of most casts using the VOF technique. Though the three-dimensional numerical model based on the Cartesian coordinate system can be applied to any shape of cast, it becomes very inefficient when the three-dimensional model is applied to the cast of axi-symmetrical shape since the control volume includes at least 11 of the physical model. In addition, the more meshes should be distributed along the circumferential boundaries of curved shape in the Cartesian coordinate system fur the better results, while such curved circumferential boundary does not need to be considered in the two-dimensional cylindrical coordinate system. This motivates the present study i.e. developing a two-dimensional numerical model for the axi-symmetrically shaped casts. The SIMPLER algorithm, the VOF method, and the equivalent specific heat method have been adopted in the combined algorithm for the flow calculation, the free surface tracking, and the phase change heat transfer, respectively. The numerical model has been applied to the casting process of a pulley, and it was proven that the mesh and time effective calculation was accomplished comparing to the calculation using three-dimensional model.

Development of an Enhanced 8-node Hybrid/Mixed Plane Stress Element : HQ8-14βElement (8절점 Hybrid/Mixed 평면응력요소)

  • Chun, Kyoung Sik;Park, Won Tae;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.319-326
    • /
    • 2006
  • A new enhanced 8-node hybrid/mixed plane stress elements based on assumed stress fields and modifed shape functions has been presented. The assumed stress fields are derived from the non-conforming displacement modes, which are less sensitive to geometric distortion. Explicit expression of shape functions is modifed so that it can represent any quadratic fields in Cartesian coordinates under the same condition as 9-node isoparametric element. The newly developed element has been designated as 'HQ8-$14{\beta}$'. The presented element is compared with existing elements to establish its accuracy and efficiency. Over a wide range of mesh distortions, the element presented here is found to be exceptionally accurate in predicting displacements.

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

NTP-ERSN verification with C5G7 1D extension benchmark and GUI development

  • Lahdour, M.;El Bardouni, T.;El Hajjaji, O.;Chakir, E.;Mohammed, M.;Al Zain, Jamal;Ziani, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1079-1087
    • /
    • 2021
  • NTP-ERSN is a package developed for solving the multigroup form of the discrete ordinates, characteristics and collision probability of the Boltzmann transport equation in one-dimensional cartesian geometry, by combining pin cells. In this work, C5G7 MOX benchmark is used to verify the accuracy and efficiency of NTP-ERSN package, by treating reactor core problems without spatial homogenization. This benchmark requires solutions in the form of normalized pin powers as well as the vectors and the eigenvalue. All NTP-ERSN simulations are carried out with appropriate spatial and angular approximations. A good agreement between NTP-ERSN results with those obtained with OpenMC calculation code for seven energy groups. In addition, our studies about angular and mesh refinements are carried out to produce better quality solution. Moreover, NTP-ERSN GUI has also been updated and adapted to python 3 programming language.

A Geographic Distributed Hash Table for Virtual Geographic Routing in MANET (MANET에서 가상 위치 기반 라우팅을 위한 지역 분산 해쉬 테이블 적용 방법)

  • Ko, Seok-Kap;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.58-65
    • /
    • 2008
  • This paper presents a new geographic distributed hash table (GDHT) for MANETs or Mesh networks, where virtual geographic protocol is used. In previous wort GDHT is applied to a network scenario based on two dimensional Cartesian coordinate system. Further, logical data space is supposed to be uniformly distributed. However, mobile node distribution in a network using virtual geographic routing is not matched to data distribution in GDHT. Therefore, if we apply previous GDHT to a virtual geographic routing network, lots of DHT data are probably located at boundary nodes of the network or specific nodes, resulting in long average-delay to discover resource (or service). Additionally, in BVR(Beacon Vector Routing) or LCR(Logical Coordinate Routing), because there is correlation between coordinate elements, we cannot use normal hash function. For this reason, we propose to use "geographic hash function" for GDHT that matches data distribution to node distribution and considers correlation between coordinate elements. We also show that the proposed scheme improves resource discovery efficiently.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

Development of Radiation Shielding Analysis Program Using Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 방사선차폐해석 프로그램개발)

  • Park, Ho-Sin;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • A computational program [TDET] of the particle transport equation is developed on radiation shielding problem in two-dimensional cartesian geometry based on the discrete element method. Not like the ordinary discrete ordinates method, the quadrature set of angles is not fixed but steered by the spatially dependent angular fluxes. The angular dependence of the scattering source term in the particle transport equation is described by series expansion in spherical harmonics, and the energy dependence of the particles is considered as well. Three different benchmark tests are made for verification of TDET : For the ray effect analysis on a square absorber with a flat isotropic source, the results of TDET calculation are quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray effect more effectively than S$_{N}$ calculation. In the analysis of the streaming leakage through a narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming leakage through the duct as well as MORSE-CG does, and quite better than S$_{N}$ calculation. In a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of linearly anisotropic scattering with two groups of energy, TDET calculations show local ray effect between neighboring meshes compared with S$_{N}$ calculations in which the ray effect extends broadly over several meshes.eshes.

  • PDF