• Title/Summary/Keyword: Cartesian coordinate manipulator

Search Result 15, Processing Time 0.028 seconds

A Robotic Milking Manipulator for Teat-cup Attachment Modules (착유컵 자동 착탈을 위한 매니퓰레이터 개발)

  • Lee, D. W.;Kim, W.;Kim, H. T.;Kim, D. W.;Choi, D. Y.;Han, J. D.;Kwon, D. J.;Lee, S. K.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.163-168
    • /
    • 2001
  • A manipulator for test-cup attachment modules, which was a part of a robot milking system, was developed to reduce cost and labor for cow milking processing. A Cartesian coordinate manipulator was designed for the milking process, because it was quite flexible and can be constructed more economically than any other configuration. The manipulator was made use of DC motors, screws for power transmission, a RS422 interface system for the transmission of coordinate values and a one-chip microprocessor, 89C52. Performance tests of the manipulator were conducted to measure experimentally the precision of all axes. Some of the results are as follows. 1. The Cartesian coordinate manipulator was designed and built. Dimension of the three perpendicular axes (X, Y, and Z) and one arm’s axis(W) to pick up and transfer the modules were 700㎜$\times$450㎜$\times$550㎜$\times$650㎜. The arm’s axis moved the teat-cup attachment module, which attached four teat-cup to four teats, detached four teat-cup from four teats, was designed and manufactured by using CAD, CAM and CNC. 3. After 10 replications of exercising the manipulator, mean precision values(positioning error) of X, Y, Z axes wee 0.48㎜, 0.20㎜, 0.19㎜, respectively. Therefore, we conclude the axes to have a precision better than 0.5㎜, had no problem to operate correctly the milking manipulator.

  • PDF

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

A Minimum time trajectory planning for robotic manipulators with input torque constraint (입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획)

  • Hong, In-Keun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF

평행기구 머니플레이터의 작업공간에 대한 연구

  • 정판규;이민기;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.765-768
    • /
    • 1995
  • A double parallel manipulator has only two or three links in each parallel mechanism. this reduces link interferences so that we expect a large workspace. To prove this property, this paper analyzes the workspace of a double parallel manipulator and compare it with that of a Stewart Platform. the analysis is separately conducted in a positional and an orientational division. For each, we obtain the workspace accrding to the ranges of lengths of links and show the volume in a cartesian coordinate or the angular ranges in yaw and pitch motions.

  • PDF

Design of a PWM Programmable Controller for Cartesian Coordinates Robot (직각 좌표 로보트의 PWM 프로그래머블 제어기 설계)

  • 이두복;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.293-300
    • /
    • 1987
  • This paper presents a desing of a PWM programmable controller for industrial robot to be utilized in process which reqires various movements and repeating operations. To be specific, a low-level robot language is constructed which makes easy for the user to program complex robot motion, and an interpreter is developed to execute the program. Also, related hardware and software, and monitor program for convenience of user are implemented. When the proposed controller is applied to the catresian coordinate 4-axis manipulator, it reveals that the error probabilities of X,Y and Z axis as 0.033%, 0.023%,0.028% respectively.

  • PDF

Development of a Robotic Transplanter for Bedding Plants(III)-Development of a Robotic Transplanter (육묘용 로봇 이식기의 개발(III)-로봇이식기의 개발-)

  • 류관희;이희환;김기영;한재성
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.06c
    • /
    • pp.238-246
    • /
    • 1997
  • This study was conducted to develop a robotic transplanter for bedding plants. The robotic transplanter consisted of machine vision system, a manipulator, a gripper and plug tray transfer system. The performance of the robotic transplanter was tested and compared by two different transplanting methods, which were to consider the leaf orientation of seedlings and not to. Results of this study were as follows. (1) A cartesian coordinate manipulator for a robotic transplanter with 3 degree of freedom was constructed. The accuracy of position control was $\pm$1 mm. (2) The robotic transplanter with the machine vision system, the manipulator, the gripper and the transfer system was developed and tested with a shovel-type finger. Without considering the orientation of leaves, the success rates of transplanting healthy cucumber seedlings in 72-cell and 128-cell plug-trays were 95.5% and 94.5% respectively. Considering the orientation of leaves, the success rates of transplanting healthy cucumber seedling in 72-cell and 128-cell plug-trays were 96.0% and 95.0% respectively.

  • PDF

A Study on the Design of a Digital Controller for DC Servo Motor (서보 모터의 디지털 제어기 설계에 관한 연구)

  • Lee, Doo-Bok;Hong, Eon-Sik;Choe, Hong-Kyu;Chae, Dong-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-35
    • /
    • 1987
  • This paper deals with the design of the digital controller for DC servo motor, and it is implemented for the cartesian coordinate 4 axes manipulator. A design method of the controller is adopted an algorithm using the digital position locked loop(DPLL) method and the linear PID control for the smooth motion. To simplify the hardware configuration of control system, 8279 keyboard/display controller, Z-80 CTC counter and 8255 PPI are used. Therefore the design method to control each motor as real-time is presented. To show effectiveness of the design, the PWM circuit and frequency/voltage converter are applied for the velocity control of robot system. When the proposed controller is applied to the 4-axes manipulator, it reveals that the error probabilities of X, Y and Z axis as 0.033%, 0.023% and 0.028% respectively.

  • PDF

A Compliance Control Method for Robot Manipulators Using Nonlinear Stiffness Adaptation (비선형 강성 조절 방법을 이용한 로봇 매니퓰레이터의 컴플라이언스 제어 방법)

  • Kim, Byoyng-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.703-709
    • /
    • 2000
  • This paper proposes a compliance control strategy for the robot manipulators accidentally interact-ing with an unknown environment. In this proposed method each in the diagonal stiffness matrix corre-sponding to the task coordinate in a Cartesian space is adaptively adjusted during contact along the corresponding axis based on the contact force with its environment. This method can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results show the effectiveness of the proposed method by employing a two link direct drive manipulator interacting with an unknown environment.

  • PDF

Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera (능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-12
    • /
    • 2005
  • A Mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment. because it has the higher performance than a fixed base manipulator in regard to the size of it's operational workspace. Unfortunately the use of a mobile robot introduces non-holonomic constraints, and the combination of a mobile robot and a manipulator generally introduces kinematic redundancy. In this paper, first a method for estimating the position of object at the cartesian coordinate system acquired by using the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and real object is proposed. Second, we propose a method to determine a optimal path between current the position of mobile manipulator whose mobile robot is non-holonomic and the position of object estimated by image information through the global displacement of the system in a symbolic way, using homogenous matrices. Then, we compute the corresponding joint parameters to make the desired displacement coincide with the computed symbolic displacement and object is captured through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiment using the mobile manipulator.

Task Performance of a Mobile Manipulator using Cost Function and Vision Information (가격 함수 및 비젼 정보를 이용한 이동매니퓰레이터의 작업 수행)

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.345-354
    • /
    • 2005
  • A mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this Position estimation, a method of determining an optimal path for the mobile manipulator from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the mobile manipulator.

  • PDF