• 제목/요약/키워드: Cartesian closed category topological universe

검색결과 8건 처리시간 0.021초

직관적 H-퍼지 관계 (Intuitionistic H-Fuzzy Relations)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.37-40
    • /
    • 2003
  • We introduce the category IRel (H) consisting of intuitionistic fuzzy relational spaces on sets and we study structures of the category IRel (H) in the viewpoint of the topological universe introduced by L.D.Nel. Thus we show that IRel (H) satisfies all the conditions of a topological universe over Set except the terminal separator property and IRel (H) is cartesian closed over Set.

  • PDF

Extension of L-Fuzzy Topological Tower Spaces

  • Lee Hyei Kyung
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.389-394
    • /
    • 2005
  • The purpose of this paper is to introduce the notions of L-fuzzy topological towers by using a completely distributive lattic L and show that the category L-FPrTR of L-fuzzy pretopoplogical tower spaces and the category L-FPsTR of L-fuzzy pseudotopological tower spaces are extensional topological constructs. And we show that L-FPsTR is the cartesian closed topological extension of L-FPrTR. Hence we show that L-FPsTR is a topological universe.

The Category VSet(H)

  • Lim, Pyung-Ki;Kim, So-Ra;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.73-81
    • /
    • 2010
  • We introduce the new category VSet(H) consisting of H-fuzzy spaces and H-fuzzy mappings between them satisfying a certain condition, and investigate VSet(H) in the sense of a topological universe. Moreover, we show that VSet(H) is Cartesian closed over Set.

H * H-FUZZY SETS

  • Lee, Wang-Ro;Hur, Kul
    • 호남수학학술지
    • /
    • 제32권2호
    • /
    • pp.333-362
    • /
    • 2010
  • We define H*H-fuzzy set and form a new category Set(H*H) consisting of H*H-fuzzy sets and morphisms between them. First, we study it in the sense of topological universe and obtain an exponential objects of Set(H*H). Second, we investigate some relationships among the categories Set(H*H), Set(H) and ISet(H).

Interval-Valued H-Fuzzy Sets

  • Lee, Keon-Chang;Lee, Jeong-Gon;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.134-141
    • /
    • 2010
  • We introduce the category IVSet(H) of interval-valued H-fuzzy sets and show that IVSet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study some relations among IVSet (H), ISet (H) and Set (H).

INTUITIONISTIC H-FUZZY SETS

  • HUR KUL;KANG HEE WON;RYOU JANG HYUN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권1호
    • /
    • pp.33-45
    • /
    • 2005
  • We introduce the category ISet(H) of intuitionistic H-fuzzy sets and show that ISet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study the relation between Set(H) and ISet(H).

  • PDF

범주 IRe $l_{R}$(H)의 부분범주 (Some Subcategories of The Category IRe$l_{R}$(H))

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.29-32
    • /
    • 2003
  • We introduce the subcategories IRe $l_{PR}$ (H), IRe $l_{PO}$ (H) and IRe $l_{E}$(H) of IRe $l_{R}$(H) and study their structures in a viewpoint of the topological universe introduced by L.D.Nel. In particular, the category IRe $l_{R}$(H)(resp. IRe $l_{P}$(H) and IRe $l_{E}$(H)) is a topological universe eve, Set. Moreover, we show that IRe $l_{E}$(H) has exponential objects.ial objects.

  • PDF

직관적 H-퍼지 반사관계 (Intuitionistic H-Fuzzy Reflexive Relations)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.33-36
    • /
    • 2003
  • We introduce the subcategory IRel$\_$R/ (H) of IRel (H) consisting of intuitionistic H-fuzzy reflexive relational spaces on sets and we study structures of IRel$\_$R/ (H) in a viewpoint of the topological universe introduce by L.D.Nel. We show that IRel$\_$R/ (H) is a topological universe over Set. Moreover, we show that exponential objects in IRel$\_$R/ (H) are quite different from those in IRel (H) constructed in [7].

  • PDF