• Title/Summary/Keyword: Cartesian closed category topological universe

Search Result 8, Processing Time 0.018 seconds

Intuitionistic H-Fuzzy Relations (직관적 H-퍼지 관계)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.37-40
    • /
    • 2003
  • We introduce the category IRel (H) consisting of intuitionistic fuzzy relational spaces on sets and we study structures of the category IRel (H) in the viewpoint of the topological universe introduced by L.D.Nel. Thus we show that IRel (H) satisfies all the conditions of a topological universe over Set except the terminal separator property and IRel (H) is cartesian closed over Set.

  • PDF

Extension of L-Fuzzy Topological Tower Spaces

  • Lee Hyei Kyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.389-394
    • /
    • 2005
  • The purpose of this paper is to introduce the notions of L-fuzzy topological towers by using a completely distributive lattic L and show that the category L-FPrTR of L-fuzzy pretopoplogical tower spaces and the category L-FPsTR of L-fuzzy pseudotopological tower spaces are extensional topological constructs. And we show that L-FPsTR is the cartesian closed topological extension of L-FPrTR. Hence we show that L-FPsTR is a topological universe.

The Category VSet(H)

  • Lim, Pyung-Ki;Kim, So-Ra;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.73-81
    • /
    • 2010
  • We introduce the new category VSet(H) consisting of H-fuzzy spaces and H-fuzzy mappings between them satisfying a certain condition, and investigate VSet(H) in the sense of a topological universe. Moreover, we show that VSet(H) is Cartesian closed over Set.

H * H-FUZZY SETS

  • Lee, Wang-Ro;Hur, Kul
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.333-362
    • /
    • 2010
  • We define H*H-fuzzy set and form a new category Set(H*H) consisting of H*H-fuzzy sets and morphisms between them. First, we study it in the sense of topological universe and obtain an exponential objects of Set(H*H). Second, we investigate some relationships among the categories Set(H*H), Set(H) and ISet(H).

Interval-Valued H-Fuzzy Sets

  • Lee, Keon-Chang;Lee, Jeong-Gon;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.134-141
    • /
    • 2010
  • We introduce the category IVSet(H) of interval-valued H-fuzzy sets and show that IVSet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study some relations among IVSet (H), ISet (H) and Set (H).

INTUITIONISTIC H-FUZZY SETS

  • HUR KUL;KANG HEE WON;RYOU JANG HYUN
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.33-45
    • /
    • 2005
  • We introduce the category ISet(H) of intuitionistic H-fuzzy sets and show that ISet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study the relation between Set(H) and ISet(H).

  • PDF

Some Subcategories of The Category IRe$l_{R}$(H) (범주 IRe $l_{R}$(H)의 부분범주)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.29-32
    • /
    • 2003
  • We introduce the subcategories IRe $l_{PR}$ (H), IRe $l_{PO}$ (H) and IRe $l_{E}$(H) of IRe $l_{R}$(H) and study their structures in a viewpoint of the topological universe introduced by L.D.Nel. In particular, the category IRe $l_{R}$(H)(resp. IRe $l_{P}$(H) and IRe $l_{E}$(H)) is a topological universe eve, Set. Moreover, we show that IRe $l_{E}$(H) has exponential objects.ial objects.

  • PDF

Intuitionistic H-Fuzzy Reflexive Relations (직관적 H-퍼지 반사관계)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.33-36
    • /
    • 2003
  • We introduce the subcategory IRel$\_$R/ (H) of IRel (H) consisting of intuitionistic H-fuzzy reflexive relational spaces on sets and we study structures of IRel$\_$R/ (H) in a viewpoint of the topological universe introduce by L.D.Nel. We show that IRel$\_$R/ (H) is a topological universe over Set. Moreover, we show that exponential objects in IRel$\_$R/ (H) are quite different from those in IRel (H) constructed in [7].

  • PDF