• Title/Summary/Keyword: Cartesian

Search Result 670, Processing Time 0.022 seconds

A Study of Applicability of a RNG $k-\varepsilon$ Model (RNG $k-\varepsilon$ 모델의 적용성에 대한 연구)

  • Yang, Hei-Cheon;Ryou, Hong-Sun;Lim, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

Theoretical investigation on rain-wind induced vibration of a continuous stay cable with given rivulet motion

  • Li, Shouying;Chen, Zhengqing;Li, Shouke
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.481-503
    • /
    • 2014
  • A new theoretical model on rain-wind induced vibration (RWIV) of a continuous stay cable is developed in this paper. Different from the existing theoretical analyses in which the cable was modeled as a segmental rigid element, the proposed scheme focuses on the in-plane and out-of-plane responses of a continuous stay cable, which is identical with the prototype cable on cable-stayed bridge. In order to simplify the complexities, the motion law of the rivulet on the cable surface is assumed as a sinusoidal way according to some results obtained from wind tunnel tests. Quasi-steady theory is utilized to determine the aerodynamic forces on the cable. Equations of motion of the cable are derived in a Cartesian Coordinate System and solved by using finite difference method to obtain the in-plane and out-of-plane responses of the cable. The results show that limited cable amplitudes are achieved within a limited range of wind velocity, which is a unique characteristic of RWIV of stay cable. It appears that the in-plane cable amplitude is much larger than the out-of-plane cable amplitude. Rivulet frequency, rivulet distribution along cable axis, and mean wind velocity profile, all have significant effects on the RWIV responses of the prototype stay cable. The effects of damping ratio on RWIVs of stay cables are carefully investigated, which suggests that damping ratio of 1% is needed to well mitigate RWIVs of prototype stay cables.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

An Adaptive Watermarking Scheme for Three-Dimensional Mesh Models (3차원 메쉬 모델의 적응형 워터마킹 방법)

  • 전정희;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.41-50
    • /
    • 2003
  • For copyright protection of digital contents, we employ watermarking techniques to embed watermark signals into digital host data. In this paper we propose an adaptive watermarking algorithm for three-dimensional (3-D) mesh models. Watermark signals are inserted into vertex coordinates adaptively according to changes of their position values. While we embed strong watermarks in the areas of large variations, watermarks are weakly inserted in other areas. After we generate triangle strips by traversing the 3-D model and convert the Cartesian coordinates to the spherical coordinate system, we calculate variations of vertex positions along the traversed strips. Then, we insert watermark signals into the vertex coordinates adaptively according to the calculated variations. We demonstrate that imperceptibility of the inserted watermark is significantly improved and show the bit error rate (BER) for robustness.

Position and Attitude Estimation of a Capsule Endoscope based on Ultrasonic Ranging (초음파 거리를 이용한 캡슐 내시경의 위치 및 자세각 추정)

  • Kim, Eun-Joung;Kim, Myung-Yu;Kim, Deok-Ki;Kim, Yong-Dae;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.38-44
    • /
    • 2007
  • This paper presented a location and attitude estimation scheme of a capsule endoscope based on ultrasonic ranging. The scheme comprised eight on-capsule ultrasonic sensors to alleviate measurement errors due to irregularities in human body ultrasonic characteristics. It calculated the coordinate values and angles in a Cartesian coordinate system. The Matlab simulation reflecting random errors yielded the average deviations of 0.8mm in the location and $0.2^{\circ}$ in the attitude angle. These values are far smaller than normal intestine movement ranges inside human body, and will contribute accurate diagnosis of intestine.

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

Tracking Filter Dealing with Nonlinear Inherence as a System Input (비선형 특성을 시스템 입력으로 처리하는 추적 필터)

  • Shin, Sang-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • The radar measurements are composed of range, Doppler and angles which are expressed as polar-coordinate components. An approach to match the measurements with the states of target dynamics which are modeled in cartesian coordinates is to use the pseudo-measurements or the extended Kalman filter in order to solve the mismatching problem. Another approach is that the states of dynamics are modeled in polar coordinates and measurement equation is linear. However, this approach bears that we have to deal with a time-varying dynamics. In this study, it is proposed that the states of dynamics are expressed as polar-coordinate component and the system matrix of the dynamic equation is modeled as a time-invariant. Nonlinear terms that appear due to the proposed modeling are regarded as a system input. The results of a series of simulation runs indicate that the tracking filter that uses the proposed modeling is viable from the fact that the Doppler measurement is easy to be augmented in the measurement equation.

Development of Wireless Gantry Loader System (무선 갠트리 로더 시스템 개발)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4296-4301
    • /
    • 2011
  • Gantry loader which is also called as gantry robot is a kind of cartesian coordinate robot with two or more linear motions. A conventional gantry system has cableveyor for protecting power and signal cables, but the use of cableveyor makes a delay of work due to frequent repairing for its aging. This study reports that a wireless gantry loader is able to be operated without a power line for power transmission or a signal cable for motion control. The wireless gantry loader enables a convenient maintenance and a stable productivity by the reduction of wire broken from fatigue. The developed loader system is controlled by PC-based motion controller and is communicated by wireless LAN devices. The line from a power source to the loader system was substituted by attaching trolley bar on the traveling beam. The loader system was designed to be moved with high speed and high repeatability, and the motion was observed continuously by monitoring system in the PC-based controller. The maximum speed and the repeatability for the transferring and loading axes are 200 m/min, 60 mm and 100 m/min, 40 mm respectively.