• 제목/요약/키워드: Carrier-mediated transport

검색결과 43건 처리시간 0.024초

Nitrone계 항산화제 (PBN)의 뇌에서 혈액으로의 배출과 뇌 수송 특성 (Characterization of the Brain Transport and Brain-to-Blood Efflux of Nitrone Based Antioxidant, PBN)

  • 이나영;강영숙
    • 약학회지
    • /
    • 제47권4호
    • /
    • pp.224-229
    • /
    • 2003
  • We have investigated the transport characteristics of synthetic antioxidant and free radical scavenger, $\alpha$-phenyl-n-tert-butyl nitrone (PBN) at the blood-brain barrier (BBB) by in vitro uptake study in conditionally immortalized rat brain capillary endothelial cell line (TR-BBB). Also, the efflux of PBN from brain to blood is estimated using the brain efflux index (BEI) method. Choline is a charged organic cation, including nitrogen-methyl group and shows the carrier-mediated distribution to the brain. [$^3$H]Choline uptake by TR-BBB cells was significantly inhibited by PBN with $IC_{50}$/ of 1.2 mM, which appears to be due to similar structures between choline and PBN. And, PBN was microinjected into Par2 of the rat brain by BEI method, and was eliminated from the brain with an apparent elimination half-life of about 2 min. Also, [$^3$H]choline efflux was significantly inhibited by PBN using BEI method. In conclusion, the efflux transport of PBN takes place across the BBB and PBN may be transported into the brain and eliminated from the brain by BBB choline transporter.

가토 신피질 절편에서 Uric Acid 이동 (Accumulation of Uric Acid in Rabbit Kidney Cortical Slices)

  • 이성태;임채준;우재석;김용근
    • The Korean Journal of Physiology
    • /
    • 제21권2호
    • /
    • pp.283-289
    • /
    • 1987
  • Uric acid transport across the basolateral membrane of renal proximal tubules was studied in rabbit kidney cortical slices. Uric acid uptake was greater under $O_2$ atmosphere compared to under $N_2$ atmosphere, and was increased with $Na^{2+}$ concentration in incubation medium. Uric acid inhibited PAH uptake but not TEA uptake and did trans-stimulated PAH efflux. PAH also inhibited uric acid uptake. Uric acid uptake was inhibited by harmaline, ouabin, SITS, DIDS and pyrazinoic acid. The inhibition of PAH uptake by these inhibitors also was reasonably comparable to that of uric acid uptake. These results suggest that uric acid was transported across the basolateral membrane of renal tubule by a carrier-mediated process which was by a common transport system with PAH in rabbit.

  • PDF

수용성 아미노메틸칼릭스아렌의 합성 및 방향족 물질의 통과실험 연구 (Syntheses and Arene Transport Studies of Water Soluble Aminomethylcalixarene)

  • 남계춘;김대순
    • 대한화학회지
    • /
    • 제36권6호
    • /
    • pp.933-940
    • /
    • 1992
  • Calix[6]arene을 포름알데히드와 이차아민과 반응시키면 물에 녹는 칼릭세린 염기가 얻어진다. 이를 메틸요오드로 처리하여 암모늄 염을 만들고 다양한 친핵성 물질과 반응시키면 칼릭세린의 파라위치에 작용기가 포함된 calix[6]arene이 얻어진다. Calix[6]arene도 포름알데히드와 이차의 아릴아민과 반응시켜 물에 녹는 칼릭세린 아민을 만들었다. 이렇게 합성된 칼릭세린중 물에 녹는 아민과 산기가 포함된 calix[6]arene과 calix[8]arene을 운반체로 이용하여 중성의 방향족 물질들을 통과시키는 연구를 U 형태의 유리관을 이용하여 수행하였다. 방향족 기질들로는 나프탈렌, 안트라센, 파이렌, 풀우란텐 등의 고체물질을 사용하였다.

  • PDF

Kinetic Analysis about the Bidirectional Transport of 1-Anilino-8-naphthalene Sulfonate (ANS) by Isolated Rat Hepatocytes

  • Lee, Pung-Sok;Song, Im-Sook;Shin, Tae-Ha;Chung, Suk-Jae;Shim, Chang-Koo;Song, Sukgil;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • 제26권4호
    • /
    • pp.338-343
    • /
    • 2003
  • The purpose of the present study was to investigate the bidirectional transport of 1-anilino-8-naphthalene sulfonate (ANS) using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was saturable, with a $K_m of 29.1\pm3.2 \mu M and V_{max} of 2.9\pm0.1$ mmol/min/mg protein. Subsequently, the initial efflux rate of ANS from isolated hepatocytes was determined by resuspending preloaded cells to 3.0% (w/v) BSA buffer. The efflux process for total ANS revealed a little saturability. The mean value of the efflux clearance was $2.2\pm0.1 \mu$ L/min/mg protein. The efflux rate of ANS from hepatocytes was markedly decreased at $4^{\circ}C$, indicating that the apparent efflux of ANS might not be attributed to the release of ANS bound to the cell surface, but to the efflux of ANS from intracellular space. The efflux clearance was furthermore corrected for the unbound intracellular ANS concentration on the basis of its binding parameters to cytosol. The relation between efflux rate and unbound ANS concentration was fitted well to the Michaelis-Menten equation with a saturable and a nonsaturable components. The $V_{max} and K_m$ values were 0.54 mmol/min/mg protein, and 10.0 $\mu$ M, respectively. Based on the comparison of the ratios of $V_{max} to K_m (V_{max}/K_m)$ corresponding to the transport clearance, the influx clearance was two times higher than the efflux clearance. Together with our preliminary studies that ATP suppression in hepatocytes substantially inhibited ANS influx rate, we concluded that the hepatic uptake of ANS is actively taken up into hepatocytes via the carrier mediated transport system.

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.

Choline and basic amine drugs efflux from brain to blood across the blood-brain barrier

  • Lee, Na-Young;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.107-107
    • /
    • 2003
  • The purpose of this study is to examine that the efflux transport system for choline from brain to blood is present at the blood-brain barrier (BBB) using brain efflux index (BEI) method. [$^3$H]Choline was microinjected into parietal cortex area 2 (Par2) region of rat brain, and was eliminated from the brain with an apparent elimination half life of 45 min. The BBB efflux clearance of [$^3$H]choline was 0.12 $m\ell$/min/g brain, which was calculated from the efflux rate constant (1.5${\times}$10$\^$-2/ min$\^$-1/) and the distribution volume in the brain slice (8.1 $m\ell$/g brain). This process was saturable and significantly inhibited by various organic cationic compounds including hemicholinium-3, tetraethylammonium chloride (TEA) and verapamil, by antioxidant, ${\alpha}$-phenyl-n-tert-butyl nitrone (PBN), and by Alzheimer's disease therapeutics, such as acetyl $\ell$-carnitine and tacrine. In conclusion, this finding is the first direct in vivo evidence that choline is transported from brain to the blood across the BBB via a carrier-mediated efflux transport process.

  • PDF

Functional characterization of Clonorchis sinensis choline transporter

  • Jeong Yeon Won;Johnsy Mary Louis;Eui Sun Roh;Seok Ho Cha;Jin-Hee Han
    • Parasites, Hosts and Diseases
    • /
    • 제61권4호
    • /
    • pp.428-438
    • /
    • 2023
  • Clonorchis sinensis is commonly found in East Asian countries. Clonorchiasis is prevalent in these countries and can lead to various clinical symptoms. In this study, we used overlap extension polymerase chain reaction (PCR) and the Xenopus laevis oocyte expression system to isolate a cDNA encoding the choline transporter of C. sinensis (CsChT). We subsequently characterized recombinant CsChT. Expression of CsChT in X. laevis oocytes enabled efficient transport of radiolabeled choline, with no detectable uptake of arginine, α-ketoglutarate, p-aminohippurate, taurocholate, and estrone sulfate. Influx and efflux experiments showed that CsChT-mediated choline uptake was time- and sodium-dependent, with no exchange properties. Concentration-dependent analyses of revealed saturable kinetics consistent with the Michaelis-Menten equation, while nonlinear regression analyses revealed a Km value of 8.3 µM and a Vmax of 61.0 pmol/oocyte/h. These findings contribute to widen our understanding of CsChT transport properties and the cascade of choline metabolisms within C. sinensis.

Characterization of valacyclovir transport mechanism across the intestinal epithelium

  • Han, H.;Covitz, M.;Surendran, N.;Stewart, B.;Amidon, G.L.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.119-119
    • /
    • 1997
  • Valacyclovir is a L-valyl ester prodrug of acyclovir which is a highly effective and selective antiviral agent in the treatment of herpes virus diseases. Valacyclovir is rapidly and almost completely converted to acyclovir and increases the oral bioavailability of acyclovir three to five fold. However, the intestinal absorption mechanism of valacyclovir is not clear. If the improved absorption mechanism of valacyclovir is fully understood, it will provide a rationale of designing the amino acid ester prodrugs of polar drugs containing hydroxyl group. The main objective of our present study is to characterize the membrane transport mechanism of valacyclovir. Methods : Intestinal absorption of valacyclovir was investigated by using in-situ rat perfusion study and its wall permeability was estimated by modified boundary layer model. The membrane transport mechanism was also investigated through the uptake study in Caco-2 cells and in CHO-hPepTl cells. Results : In the rat perfusion study, the wall permeability of valacyclovir was ten times higher than acyclovir and showed concentration dependency, Valacyclovir also demonstrated a D,L stereo-selectivity with L-isomer having an approximately five-fold higher permeability than D-isomer. Mixed dipeptides and cephalexin, which are transported by dipeptide carriers, strongly competed with valacyclovir for the intestinal absorption, while L-valine did not show any competition with valacyclovir. This indicated that the intestinal absorption of valacyclovir could be dipeptide carrier-mediated. In addition, the competitive uptake study in Caco-2 cells presented that dipeptides reduced the valacyclovir uptake but valine did not. Also, in IC$\sub$50/ study, valacyclovir showed strong inhibition on the $^3$H-gly-sar uptake in CHO-hPepTl cells over-expressing a human intestinal peptide transporter. Taken together, the result from our present study indicated that valacyclovir utilized the peptide transporter for the intestinal absorption.

  • PDF

Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

  • Feng, Mingxiao;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.829-835
    • /
    • 2015
  • It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) ($SCF^{TIR1/AFB}$) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional $SCF^{TIR1/AFB}$ auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

Study on Separation of Heavy Metal Ions in A Neutral Macrocycle-Mediated Emulsion Liquid Membrane System

  • Moon-Hwan Cho;Hea-Suk Chun;Jin-Ho Kim;Chang-Hwan Rhee;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.474-477
    • /
    • 1991
  • The preferential transport phenomena of neutral cation-anion moieties in neutral macrocycle-facilitated emulsion liquid membrane were described in this study. Emulsion membrane systems consisting of (1) aqueous source phase containing 0.001 M M($NO_3$)$_2(M=Mn^{2+},\;Co^{2+},\;Ni^{2+},\;Cu^{2+},\;Zn^{2+},\;Sr^{2+},\;Cd^{2+},\;and\;Pb^{2+})$ (2) a toluene membrane containing 0.01 M ligand $(DBN_3O_2$, DA18C6, DT18C6, TT18C6, HT18C6) and the surfactant span 80 (sorbitan monooleate) (3% v/v) and (3) an aqueous receiving phase containing $Na_2S_2O_3$ or $NaNO_3$ were studied with respect to the disappearence of transition metal ions from the source phase as a function of time. Cation transports for various two component or three component equimolar mixture of transition metal and $Cu^{2+}$ in a emulsion membrane system incorporating macrocyclic ligand (HT18C6) as carrier were determinded. $Cu^{2+}$ was transported higher rates than the other $M^{2+}$ in the mixture solution. Equilibrium constants for cation-source phase co-anion, cation macrocycle and cation-receiving phase reagent interaction are examined as parameters for the prediction of cation transport selectivities.