• Title/Summary/Keyword: Caron nanotube

Search Result 5, Processing Time 0.02 seconds

A Study on Nano-Accelerometer based on Carbon Nanotube (탄소나노튜브 기반의 나노-가속도계에 관한 연구)

  • Song, Young-Jin;Lee, Jun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We investigated the characteristics of a capacitive nano-accelerometer based on carbon nanotube by means of classical molecular dynamics simulations. The position of the telescoping nanotube was controlled by the externally applied force and the feedback sensing was achieved from the capacitance change. Considering energy dissipation, the oscillation features of the nano-accelerometers were similar, regardless of their initial displacements. The capacitance variations, which were almost linearly proportional to the applied acceleration, were monitored within an error tolerance.

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Structural Properties of EEA/Carbon nanotube and Carbon Black Composites (EEA/탄소나노튜브와 카본블랙 복합체의 구조적 특성)

  • Yang, Jong-Seok;Shin, Dong-Hoon;Lee, Kyoung-Yong;Sung, Baek-Ryong;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.218-219
    • /
    • 2006
  • To Smoothness of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black and Carbon Nanotube. Then they were produced as sheets after pressing for 20 minutes at $180^[{\circ}C]$ with a pressure of $200[kg/cm^2]$. The content of conductive carbon black and Carbon Nanotube was the variable, and their contents were 20-40[wt%] and 2-6[wt%] respectively. The smoothness was measured by JSM-6400.

  • PDF

A Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.275-283
    • /
    • 2007
  • An experimental study was conducted to investigate the effect of the morphology of CNT (Carbon Nanotube) on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using a steady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature. Although functionalized SWNT (Single-Walled Carbon Nanotube) produced more stable and homogeneous suspensions, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0% by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT (Multi-Walled Carbon Nanotube), the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.168-175
    • /
    • 2006
  • An experimental study was conducted to investigate the effect of the morphology of CNT on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using asteady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature, Although functionalized SWNT produiced a more stable and homogeneous suspension, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0 percent by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT, the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

  • PDF