• 제목/요약/키워드: Carnitine palmitoyltransferase 1

검색결과 54건 처리시간 0.017초

Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells

  • Noh, Jung-Ran;Gang, Gil-Tae;Kim, Yong-Hoon;Yang, Keum-Jin;Lee, Chul-Ho;Na, O-Su;Kim, Gi-Ju;Oh, Won-Keun;Lee, Young-Don
    • Nutrition Research and Practice
    • /
    • 제4권1호
    • /
    • pp.3-10
    • /
    • 2010
  • This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, tree radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

라이코펜 첨가 급여가 닭의 지방대사, 포도당 수송 및 친염증 유전자 발현에 미치는 영향 (Effects of Lycopene on the Expression of Lipid Metabolism, Glucose Transport and Pro-Inflammatory Related Genes in Chickens)

  • 장인석;문양수
    • 한국가금학회지
    • /
    • 제42권3호
    • /
    • pp.231-238
    • /
    • 2015
  • 라이코펜은 항산화제로서 많이 알려져 있지만, 최근에는 포유동물에서 염증 관련 면역과 지방대사 조절자로서 관심의 대상이 되기 시작하였다. 본 연구는 산란계에서 라이코펜의 가공 및 급이형태가 지방대사, 지방산 및 포도당 운반, 면역관련 유전자들의 발현에 미치는 영향을 관찰하고자 실시하였다. 백색레그혼(25주령) 48수를 lycopene의 첨가원에 따라 대조군(CON, basal diet(BD)), 토마토 건조분말 급여군(T1, BD+tomato powder-containing 10 mg lycopene/kg 사료), 토마토 건조분말 유화처리군(T2, BD+micellar of tomato powder-containing 10 mg lycopene/kg 사료) 및 정제 lycopene 급여군 (T3, BD+purified 10 mg lycopene/kg 사료) 등 모두 4처리구로 설정하여 5주간 사양시험을 실시하였다. 시험 종료 후 각 개체의 간으로부터 total RNA를 추출하고 real-time PCR을 이용하여 유전자들의 발현을 분석하였다. 라이코펜을 급여받은 닭은 급여형태와 관계없이 모두 PPAR${\gamma}$의 발현을 억제하였다(P<0.05). 지방합성효소 유전자 FASN의 발현은 T2에서 효과적으로 감소하였으나(P<0.05), T1, T3에서는 영향이 없었다. SREBP2와 C/EBP${\alpha}$ 또한 T2에서 효과적으로 유전자 발현이 억제됨을 보였다. 세포 내 포도당 흡수기능을 하는 GLUT8은 T2와 T3에서 유전자 발현이 증가하였다(P<0.05). 지방산 산화를 위한 지방산 운반체인 CPT-1 유전자는 라이코펜에 의한 영향을 받지 않았다. 면역 관련 염증인자인 TNF${\alpha}$와 IL6는 라이코펜에 의하여 효과적으로 그 발현이 억제되었다(P<0.05). 본 연구결과는 라이코펜의 급여 형태가 지방대사 관련 유전자 발현에 영향을 미치며, 그 중 유화처리된 라이코펜이 지방대사, 포도당 및 면역반응에 더 효과적 급이 수단이 될 수 있음을 보여주었다.