• Title/Summary/Keyword: Carleticulin

Search Result 1, Processing Time 0.013 seconds

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.