• 제목/요약/키워드: Carleman's inequality

검색결과 3건 처리시간 0.014초

칼레만 부등식의 개선 결과들과 폴야-놉 부등식의 개선 (Improved Carleman's Inequality and Improvement of Polya-Knopp's Inequality)

  • 권언근;이진기
    • East Asian mathematical journal
    • /
    • 제34권4호
    • /
    • pp.359-369
    • /
    • 2018
  • This note, we first show that the famous Carleman's inequality can be improved if we find a positive sequence $\{c_n\}$ such that $c_n{\sum\limits_{j=n}^{\infty}}{\frac{1}{j\(\prod_{k=1}^{j}ck\)^{\frac{1}{j}}}}$ < e. Then we list a lot of known results in the literature improving Carleman's inequality by this method. These results can be a good source to a further research for interested students. We next consider about similar improvement of Polya-Knopp's inequality, which is a continuous version of Carleman's inequality. We show by a manner parallel to the case of Carleman's inequality that Polya-Knopp's inequality can be improved if we find a positive function c(x) such that $c(x){\int}_{x}^{\infty}\frac{1}{t\;{\exp}\(\frac{1}{t}{\int}_{0}^{t}{\ln}\;c(s)\;ds\)}dt$ < e. But there are no known results improving Polya-Knopp's inequality by this method. Suggesting to find a new method, we lastly show that there is no nice continuous function c(x) that satisfies the inequality.

ON CARLEMAN'S INEQUALITY AND ITS IMPROVEMENT

  • Kim, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.1021-1026
    • /
    • 2001
  • In this paper, we give an improvement of Carleman’s inequality by using the strict monotonicity of the power mean of n distinct positive numbers.

APPLICATIONS OF TAYLOR SERIES FOR CARLEMAN'S INEQUALITY THROUGH HARDY INEQUALITY

  • IDDRISU, MOHAMMED MUNIRU;OKPOTI, CHRISTOPHER ADJEI
    • Korean Journal of Mathematics
    • /
    • 제23권4호
    • /
    • pp.655-664
    • /
    • 2015
  • In this paper, we prove the discrete Hardy inequality through the continuous case for decreasing functions using elementary properties of calculus. Also, we prove the Carleman's inequality through limiting the discrete Hardy inequality with applications of Taylor series.