• Title/Summary/Keyword: Cargo fire

Search Result 29, Processing Time 0.031 seconds

A Study of Explosion Risk Assessment for Designation of Dangerous Goods Transshipment Pier at Ulsan Port (울산항 위험물 환적부두 지정을 위한 폭발 위험성 평가에 관한 연구)

  • Kang, Min-Kyoon;Lee, Yun-Sok;Ahn, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.109-116
    • /
    • 2021
  • The explosion of a chemical tanker ship during cargo transshipment via double-banking at Ulsan Port, resulted in major damage including fires involving nearby ships. As a follow-up measure to prevent the recurrence of similar accidents, the 'Safety Management of Dangerous Goods in Port' was established, and the designation of a transshipment pier for dangerous goods is required given the risk of explosion and the impact on major facilities in the port. This study evaluated the Fire & Explosion Index of major transshipment cargoes in Ulsan Port to design a transshipment pier based on the Explosion Risk Assessment. Based on the results of Fire & Explosion Index evaluation of styrene monomer and benzene, severe explosion risk was confirmed, and the exposure radius was calculated. Based on the results of the exposure radius, the risk range for each major pier was calculated, and 12 terminals were proposed as transshipment pier candidates considering port facilities, surrounding dangerous facilities, and residential aspects. Since the results of the study suggest transshipment piers based on the risk radius alone, maritime traffic safety, pier and mooring facilities, safety facilities and accessibility for emergency response should be considered comprehensively to designate actual transshipment piers.

The Development of Multi-Blades I.G.G Blower for Shipbuilding & Ocean (조선/해양용 다단 블레이드 I.G.G 블로워의 개발)

  • Jang, Sung-Cheol;Park, Rae-Bang;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.446-450
    • /
    • 2012
  • I.G.G is abbreviation for inert gas generator high temperature in cargo tank it desulfurize, exhaust and froze the gas that combined brimstone element and soot, then supply inert gas by blower and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happen frequently. On this research, we will reduce the size and weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient I.G.G. blower design by research a flow rate and pressure specialty from the diameter of impeller number of blades and size of casing.

A Study on the Development of 3rd Stage IGG Blower for Shipbuilding Using CFD (CFD를 이용한 선박용 IGG Blower 개발에 관한 연구)

  • Lee, Jong-Jing;Yi, Chung-Seub;Jeong, Soon-Jae;Jang, Sung-Cheol;Kim, Chi-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1309-1314
    • /
    • 2008
  • I.G.G is abbreviation for Inert Gas Generator, High temperature in Cargo Tank it desulfurize, exhausted and froze the gas that combined brimstone element and soot, then supply Inert gas by blower, and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happening frequently. On this research, we will reduce the size & weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient IGG blower design by research a flowing & pressure specialty from the diameter of impeller, number of blade, and size of casing.

  • PDF

Legal Aspects on ICAO SARPs Regarding Alternative Fire Extinguishing Agent to Halon Fire Extinguishers

  • Lee, Gun-young;Kang, Woo-Jung
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.1
    • /
    • pp.205-226
    • /
    • 2018
  • For sustainable development of air transport, the establishment and application of international standards of environmental protection area is significant. The development and use of alternative fire extinguishing agent to Halon, which is used for the fire extinguishing systems of engine nacelles/APU and cargo compartments, has been requested in order to protect the ozone layer. The ICAO has been active in preparing international standards and recommended practices (SARPs); however, certification of alternative fire extinguishing agents has been postponed due to technical readiness problem.. Consequently, the implementation of SARPs has also been postponed by two years from the end of 2016. to the end of 2018. As such consequences have caused confusion among Member States regarding its implementation, it is necessary to discuss and pay more attention to this issue. ICAO Council and Air Navigation Commission should consider between setting the implementation time frame earlier or giving enough time for mature readiness and preparedness. Also in order to minimize the unnecessary discharge of Halon owned by Member States, it is necessary to consider efficient management methodologies; for example, requesting fire extinguisher manufacturers to recharge in professional ways. For the successful implementation of the SARPs, ICAO developed an implementation task list as including notification of differences, establishment of a national implementation plan, drafting of the modification to the national regulations and means of compliance, adoption of the national regulations and means of compliance. Member States can develop their own rule making process in reference with the ICAO implementation task list. This issue was presented and discussed during the 54th Conference of Directors General of civil aviation, Asia and Pacific Regions which was held in Ulaanbaatar, Mongolia in 2017 with significant attention among participated Contacting States. In this regards, ICAO Council and Air Navigation Commission should consult with Legal Bureau lawyers regarding SARPs preparing process to eliminate difficulties and confusions for proper implementation within effective date.

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers (멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구)

  • Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.

Introduction to CM Experience from Incheon International Airport (IIA) Construction Project (인천국제공항건설 사업관리 경험)

  • Park, Dae-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.20-25
    • /
    • 2004
  • On July $18^{th}$, 2003, Incheon International Airport Corporation(lIAC) signed the Construction Management Service Contract with KIDS consortium (composed of Kun-Won Eng., ITM Corp, Do-Hwa Eng, Space Croup) for the $2^{nd}$ phase construction protect consists of landfill, $\#3$ runway, remote Concourse, IAT, BHS, cargo terminal, etc scheduled to be finished by the end of 2008. KIDS dispatched qualified engineers to the Construction Management Division of IIAC for providing technical assistance to IIAC members to pursue project goals in tulle. within budget with appropriate quality level to build one of leading hul] airports for the Northeast Asia legion in the $21^{st}$ century. The work scope covers upgrading various project procedures and related computer programs, cost and schedule control, design supervision for building design including support systerns such as HVAC, fire protection, elevators and escalators, boarding bridges, electrical and communication systems, and technical support for IAT/BHS, QA/QC, field test and inspection, start-up and commissioning, etc. The purpose of this paper is to introduce the major activities of the Construction Management Services performing at the IIA project for your reference.

  • PDF

A Study on the Improvement of Port State Control in Korea (우리나라의 항만국통제 제도의 개선에 관한 연구)

  • 박병곤;정재용;박진수
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.43-61
    • /
    • 1999
  • To ensure ship's safety and preserve the marine environment from ship, IMO(International Maritime Organization) has been making much efforts. Nevertheless there are still many possibilities threatening ship's safety and the marine environment. Many vessels navigate at sea in lack of standard required by the International Convention relevant to ship's safety and the protection of marine environment. Even though the administration is responsible for perfect and continuous control for safety of ship, it cannot has jurisdiction over ships hoist its flag reasonably at all times. So the Port State has strengthened the Port State Control(PSC) activity as one step of eliminating sub-standard vessels. In the light of the fact that mentioned above, this study deals with PSC activity in Korea and port of Pusan. Total 582 ships, inspected in port of Pusan from 1st January 1998 to 30th September 1999, were analyzed in various aspect and extracted results as follows : \circled1 The inspection rate in Korea was much lower than the other states taking part in Tokyo MOU, \circled2 For flag state, the ships belong to flag of convenience(FOC) had much more deficiencies than non-convenience flag ships, \circled3 For ship type, 39 number of general dry cargo ship were detained at Pusan with serious deficiencies, \circled4 For deficiency item, the items such as life saving appliances, safety in general, navigation, load lines and fire-fighting appliances were occupied over 71.7% of total number of deficiencies, \circled5 In Asia-Pacific region, Korea was one of flags with detention percentages exceeding 3-year(1996~1998) rolling average detention percentage. Average detention rate of Korean vessels was 6.73% which was over 0.24% of average detention rate(6.49%) in Asia-Pacific region. These results may reflect to improve the performance of PSC inspection for foreign vessels and are useful for preparing PSC inspection for ocean-going ships registered in Korea.

  • PDF

Comparison of Response Systems and Education Courses against HNS Spill Incidents between Land and Sea in Korea (국내 HNS 사고 대응체계 및 교육과정에 관한 육상과 해상의 비교)

  • Kim, Kwang-Soo;Gang, Jin Hee;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2015
  • As the type of Hazardous and Noxious Substances(HNS) becomes various and the transport volume of HNS increases, HNS spill incidents occur frequently on land and the sea. In view of various damages to human lives and properties by HNS spills, it is necessary to educate and train professional personnel in preparation for and response to potential HNS spills. This study shows the current state of response systems and education courses against HNS spill incidents on land and the sea to compare those with each other between land and sea in Korea. Incident command system on land are basically similar to that at sea, but leading authority which is responsible for combating HNS spills at sea is changeable depending on the location of HNS spill, as it were, Korea Coast Guard(KCG) is responsible for urgent response to HNS spill at sea, while municipalities are responsible for the response to HNS drifted ashore. Education courses for HNS responders on land are established at National Fire Service Academy(NFSA), National Institute of Chemical Safety(NICS), etc., and are diverse. Education and training courses for HNS responder at sea are established at Korea Coast Guard Academy(KCGA) and Marine Environment Research & Training Institute(MERTI), and are comparatively simple. Education courses for dangerous cargo handlers who work in port where land is linked to the sea are established at Korea Maritime Dangerous Goods Inspection & Research Institute(KOMDI), Korea Port Training Institute(KPTI) and Korea Institute of Maritime and Fisheries Technology(KIMFT). Through the comparison of education courses for HNS responders between land and sea, some recommendations such as extension of education targets, division of an existing integrated HNS course into two courses composed of operational level and manager level with respective refresh course, on-line cyber course and joint inter-educational institute course in cooperation with other relevant institutes are proposed for the improvement in education courses of KCG and KOEM(Korea Marine Environment Management Corporation) to educate and train professionals for combating HNS spills at sea in Korea.