• Title/Summary/Keyword: Cardioprotective Effects

Search Result 60, Processing Time 0.026 seconds

Cardioprotective Effects of Salvia Miltiorrhiza Radix on the Pressure Overloaded Heart Failure Model by Transverse Aortic Constriction-induced Mice

  • Kim, Sae-Won;Jang, Woo-Seok;Baek, Kyung-Min
    • The Journal of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.23-35
    • /
    • 2016
  • Objectives: The objective of this study is to demonstrate the cardioprotective effects of Salvia Miltiorrhiza Radix (SMR) on the pressure overload (PO)-induced heart failure (HF) by transverse aortic constriction (TAC) in C57BL/6 mice through possible antioxidant effects. Methods: The mortality, body and heart weights, antioxidant defense system of the heart and histopathology of heart were analyzed. The obtained results were compared with resveratrol, in which potent cardioprotective effects on TAC mice model were already proved at a dose level of 10 mg/kg by antioxidant effects, as reference in this experiment. Results: Significant increases of mortalities, heart weights, and hypertrophic, lytic and focal fibrotic histological changes in the left ventricles were found with defects of heart antioxidant defense systems - the increases of heart cortex MDA contents, decreases of GSH contents, SOD and CAT activities in TAC control mice as compared with sham vehicle control mice, respectively. However, these HF signs induced by TAC surgery through PO and destroys heart antioxidant defense systems were significantly and dose-dependently inhibited by 14 days continuous oral treatment of SMR 500, 250 and 125 mg/kg, similar to those of resveratrol 10 mg/kg in SMR 125 mg/kg. Conclusions: The results obtained in this study propose that oral administration of SMR potently alleviates PO-induced HF by TAC, through augmentation of heart antioxidant defense system.

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

Effects of perilla oil on plasma concentrations of cardioprotective (n-3) fatty acids and lipid profiles in mice

  • Chung, Keun Hee;Hwang, Hyo Jeong;Shin, Kyung Ok;Jeon, Woo Min;Choi, Kyung Soon
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2013
  • The aim of this study was to examine the effects of perilla oil as well as several vegetable oils, including flaxseed oil, canola oil, and rice bran oil on plasma levels of cardioprotective (n-3) polyunsaturated fatty acids in mice by feeding each vegetable oil for a period of eight weeks. Concentrations of docosapentaenoic acid (DHA) and eicosapentaenoic acid (EPA), fish-based (n-3) polyunsaturated fatty acids, showed an increase in the plasma of mice fed perilla and flaxseed oils compared to those of mice in the control group (P < 0.05), whereas rice bran and canola oils did not alter plasma DPA and EPA concentrations. Arachidonic acid concentration was increased by feeding rice bran oil (P < 0.05), but not canola, flaxseed, or perilla oil. In addition, oleic acid, linoleic acid, and docosahexaenoic acid concentrations were altered by feeding dietary rice bran, canola, perilla, and flaxseed oils. Findings of this study showed that perilla oil, similar to flaxseed oil, is cardioprotective and could be used as an alternative to fish oil or even flaxseed oil in animal models.

Involvement of Adenosine in Cardioprotective Effect of Catecholamine Preconditioning in Ischemia-Reperfused Heart of Rat

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Gi-Tae;Kim, In-Kyu;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.753-761
    • /
    • 1998
  • Preconditioning of a heart with small doses of catecholamines induces a tolerance against the subsequent lethal ischemia. The present study was performed to find a specific receptor pathway involved with the catecholamine preconditioning and to test if adenosine plays a role in this cardioprotective effect. Isolated rat hearts, pretreated with small doses of ${\alpha}-\;or\;{\beta}-adrenergic$ agonists/antagonists, were subjected to 20 minutes ischemia and 20 minutes reperfusion by Langendorff perfusion method. Cardiac mechanical functions, lactate dehydrogenase and adenosine release from the hearts were measured before and after the drug treatments and ischemia. In another series of experiments, adenosine $A_1\;or\;A_2$ receptor blockers were treated prior to administration of adrenergic agonists. Pretreatments of a ${\beta}-agonist,\;isoproterenol(10^{-9}{\sim}10^{-7}\;M)$ markedly improved the post-ischemic mechanical function and reduced the lactate dehydrogenase release. Similar cardioprotective effect was observed with an ?-agonist, phenylephrine pretreatment, but much higher $concentration(10^{-4}\;M)$ was needed to achieve the same degree of cardioprotection. The cardioprotective effects of isoproterenol and phenylephrine pretreatments were blocked by a ${\beta}_1-adrenergic$ receptor antagonist, atenolol, but not by an ${\alpha}_1-antagonist,$ prazosin. Adenosine release from the heart was increased by isoproterenol, and the increase was also blocked by atenolol, but not by prazosin. A selective $A_1-adenosine$ receptor antagonist, 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX) blocked the cardioprotection by isoproterenol pretreatment. These results suggest that catecholamine pretreatment protects rat myocardium against ischemia and reperfusion injury by mediation of ${\beta}_1-adrenergic$ receptor pathway, and that adenosine is involved in this cardioprotective effect.

  • PDF

Evaluation of Cardioprotective Effects of DelNido Cardioplegia (DelNido 심정지액의 심근보호효과)

  • 우석정;장봉현;김규태
    • Journal of Chest Surgery
    • /
    • v.33 no.8
    • /
    • pp.613-622
    • /
    • 2000
  • Background: The aim of this study is to define the cardioprotective effects(functional and metabolic) of newly developed DelNido cardioplegic solution(containing plasma solution, mannitol, magnesium and lidocaine). Material and Method: This study assessed the function of rat hearts after itermittent infusion of DelNido cardioplegia with different preserving methods(Air or Icebox) for 2hours and perfusing the hearts on a Langendorff apparatus. Heart rate, left ventricular developed pressure(LVDP) and coronary flow, were measured at pre-ischemic, post-reperfusion 15min, 30min and 45min. Coronary flow was standardized to dry heart weight. Each weight was weighted to calculate water content. Creatine kinase-MB isoenzyme release was measured and ultrastructural assessment was done with electron microscopes. Result: DelNido group was better than St, Thomas group and Icebox group was better than Room-air group. Conclusion: DelNido cardioplegia have better myocardial protective effects than St. Thomas cardioplegia when they were preserved in the Room-air. But we can not tell the difference between Delnido cardiplegia with Air preserving method and St. Thomas cardioplegia with Icebox.

  • PDF

Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions

  • Irfan, Muhammad;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.538-543
    • /
    • 2020
  • Cardiovascular diseases are a rapidly growing epidemic with high morbidity and mortality. There is an urgent need to develop nutraceutical-based therapy with minimum side effects to reduce cardiovascular risk. Panax ginseng occupies a prominent status in herbal medicine for its various therapeutic effects against inflammation, allergy, diabetes, cardiovascular diseases, and even cancer, with positive, beneficial, and restorative effects. The active components found in most P. ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds, which are considered to be the main pharmacologically active constituents in ginseng. P. ginseng is an adaptogen. That is, it supports living organisms to maintain optimal homeostasis by exerting effects that counteract physiological changes caused by physical, chemical, or biological stressors. P. ginseng possesses immunomodulatory (including both immunostimulatory and immunosuppressive), neuromodulatory, and cardioprotective effects; suppresses anxiety; and balances vascular tone. P. ginseng has an antihypertensive effect that has been explained by its vasorelaxant action, and paradoxically, it is also known to increase blood pressure by vasoconstriction and help maintain cardiovascular health. Here, we discuss the potential adaptogenic effects of P. ginseng on the cardiovascular system and outline a future research perspective in this area.

Cardioprotective and Antihypertensive Effects of KR-31281, KR-31282 and KR-31299, Newly Synthesized $K_{ATP}$ Openers, in Conscious Rats and Isolated Ischemic Rat Hearts (신규 합성 $K_{ATP}$ 통로 개방제인 KR-31281, KR-31282 및 KR-31299의 흰쥐 적출 허혈 심장 및 비마취 흰쥐에 대한 심장보호 및 혈압강하 작용)

  • Lee, Sun-Sook;Yun, Yeo-Pyo;Shin, Hwa-Sup
    • Korean Journal of Clinical Pharmacy
    • /
    • v.7 no.1
    • /
    • pp.33-39
    • /
    • 1997
  • Cardiac and antihypertensive effects of BMS-180448, a cardiac-selective ATP-sensitive potassium channel opener, and its newly synthesized derivatives KR-31281, KR-31282 and KR-31299 were evaluated in isolated perfused rat hearts (25 min global ischemia/30 min reperfusion) and conscious rats. Three new compounds $(10\;{\mu}M)$ induced positive inotropism as evidenced by increased LVDP (left ventricular developed pressure) and RPP (Rate-Pressure Product) in nonischemic rat heart. HR-31299 increased CF (coronary flow) and HR (heart rate) but the other two had no effects. KR-31282, KR-31281 and HR-31299 had a tendency to increase reperfusion LVDP and RPP compared with vehicle, while the latter two significantly reduced reperfusion EDP with a tendency to inclose TTC (time to contracture). All three KR-compounds had very weak effects on MBP and HR in conscious rats. These results indicate that KR-31281 and HR-31299 may have some cardioprotective effects, although weaker than BMS-180448, and their mode of action different from that of BMS-180448, despite the similarity in major structural moeity.

  • PDF

Protective Roles of Ginseng Saponin in Cardiac Ischemia and Reperfusion Injury

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2009
  • Ginsenosides, one of the most well-known traditional herbal medicines, are used frequently in Korea for the treatment of cardiovascular symptoms. The effects of ginseng saponin on ischemia-induced isolated rat heart were investigated through analyses of hemodynamic changes including perfusion pressure, aortic flow, coronary flow, and cardiac output. Isolated rat hearts were perfused and then subjected to 30 min of global ischemia followed by 60 min of reperfusion with modified Kreb's Henseleit solution. Myocardial contractile function was continuously recorded. Ginseng saponin administered before inducing ischemia significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The ginseng saponin administered group significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) compared with ischemia control. The intracellular calcium ($[Ca^{2+}]_i$) content in rat neonatal cardiomyocytes was quantitatively determined. Administration of ginseng saponin significantly prevented $[Ca^{2+}]_i$ increase that had been induced by simulated I/R in vitro (p<0.01) in a dose-dependent manner, suggesting that the cardioprotection of ginseng saponin is mediated by the inhibition of $[Ca^{2+}]_i$ increase. Overall, we found that the administration of ginseng saponin has cardioprotective effects on the isolated rat heart after I/R injury. These results indicate that ginseng saponin has distinct cardioprotective effects in an I/R-induced rat heart.