• Title/Summary/Keyword: Cardio-oncology

Search Result 2, Processing Time 0.015 seconds

Advancing Cardio-Oncology in Asia

  • Choon Ta Ng;Li Ling Tan;Il Suk Sohn;Hilda Gonzalez Bonilla;Toru Oka;Teerapat Yinchoncharoen;Wei-Ting Chang;Jun Hua Chong;Maria Katrina Cruz Tan;Rochelle Regina Cruz;Astri Astuti;Vivek Agarwala;Van Chien;Jong-Chan Youn;Jieli Tong;Joerg Herrmann
    • Korean Circulation Journal
    • /
    • v.53 no.2
    • /
    • pp.69-91
    • /
    • 2023
  • Cardio-oncology is an emerging multi-disciplinary field, which aims to reduce morbidity and mortality of cancer patients by preventing and managing cancer treatment-related cardiovascular toxicities. With the exponential growth in cancer and cardiovascular diseases in Asia, there is an emerging need for cardio-oncology awareness among physicians and country-specific cardio-oncology initiatives. In this state-of-the-art review, we sought to describe the burden of cancer and cardiovascular disease in Asia, a region with rich cultural and socio-economic diversity. From describing the uniqueness and challenges (such as socio-economic disparity, ethnical and racial diversity, and limited training opportunities) in establishing cardio-oncology in Asia, and outlining ways to overcome any barriers, this article aims to help advance the field of cardio-oncology in Asia.

Neural Transdifferentiation: MAPTau Gene Expression in Breast Cancer Cells

  • Lara-Padilla, E;Miliar-Garcia, A;Gomez-Lopez, M;Romero-Morelos, P;Bazan-Mendez, CI;Alfaro-Rodriguez, A;Anaya-Ruiz, M;Callender, K;Carlos, A;Bandala, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1967-1971
    • /
    • 2016
  • Background: In tumor cells, aberrant differentiation programs have been described. Several neuronal proteins have been found associated with morphological neuronal-glial changes in breast cancer (BCa). These neuronal proteins have been related to mechanisms that are involved in carcinogenesis; however, this regulation is not well understood. Microtubule-associated protein-tau (MAP-Tau) has been describing in BCa but not its variants. This finding could partly explain the neuronal-glial morphology of BCa cells. Our aim was to determine mRNA expression of MAP-tau variants 2, 4 and 6 in breast cancer cell lines. Materials and Methods: Cultured cell lines MCF-10A, MDA-MB-231, SKBR3 and T47D were observed under phase-contrast microscopy for neural morphology and analyzed for gene expression of MAP-Tau transcript variants 2, 4 and 6 by real-time PCR. Results: Regarding morphology like neural/glial cells, T47D line shown more cells with these features than MDA-MB-231 and SKBR. In another hand, we found much greater mRNA expression of MAP-Tau transcript variants 2, and to a lesser extent 4 and 6, in T47D cells than the other lines. In conclusion, regulation of MAP-Tau could bring about changes in cytoskeleton, cell morphology and motility; these findings cast further light on neuronal transdifferentiation in BCa.