• 제목/요약/키워드: Cardiac non-contrast computed tomography

검색결과 9건 처리시간 0.032초

Mitral Annulus Calcification and Cardiac Conduction Disturbances: A DANCAVAS Sub-study

  • Jeppe Holm Rasmussen;Maise Hoeigaard Fredgart;Jes Sanddal Lindholt;Jens Brock Johansen;Niels Sandgaard;Abdulrahman Haj Yousef;Selma Hasific;Pernille Sonderskov;Flemming Hald Steffensen;Lars Frost;Jess Lambrechtsen;Marek Karon;Martin Busk;Grazina Urbonaviciene;Kenneth Egstrup;Axel Cosmus Pyndt Diederichsen
    • Journal of Cardiovascular Imaging
    • /
    • 제30권1호
    • /
    • pp.62-75
    • /
    • 2022
  • BACKGROUND: Due to its location very close to the bundle of His, mitral annulus calcification (MAC) might be associated with the development of atrioventricular (AV) conduction disturbances. This study assessed the association between MAC and AV conduction disturbances identified by cardiac implantable electronic device (CIED) use and electrocardiographic parameters. The association between MAC and traditional cardiovascular risk factors was also assessed. METHODS: This cross-sectional study analyzed 14,771 participants, predominantly men aged 60-75 years, from the population-based Danish Cardiovascular Screening trial. Traditional cardiovascular risk factors were obtained. Using cardiac non-contrast computed tomography imaging, MAC scores were measured using the Agatston method and divided into absent versus present and score categories. CIED implantation data were obtained from the Danish Pacemaker and Implantable Cardioverter Defibrillator Register. A 12-lead electrocardiogram was available for 2,107 participants. Associations between MAC scores and AV conduction disturbances were assessed using multivariate regression analyses. RESULTS: MAC was present in 22.4% of the study subjects. Participants with pacemakers for an AV conduction disturbance had significantly higher MAC scores (odds ratio [OR], 1.11; 95% confidence interval [CI], 1.01-1.23) than participants without a CIED, whereas participants with a CIED for other reasons did not. Prolonged QRS-interval was significantly associated with the presence of MAC (OR, 1.45; 95% CI, 1.04-2.04), whereas prolonged PQ-interval was not. Female sex and most traditional cardiovascular risk factors were significantly associated with high MAC scores. CONCLUSIONS: MAC was associated with AV conduction disturbances, which could improve our understanding of the development of AV conduction disturbances.

Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning

  • Nam gyu Kang;Young Joo Suh;Kyunghwa Han;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.334-343
    • /
    • 2021
  • Objective: We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography (CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms. Materials and Methods: We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator [LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on echocardiography were developed in combination with three different model classifier methods (logistic regression, RF, and XGBoost). The performance (c-index) of each radiomics prediction model was compared with predictions based on AVC volume and score. Results: The radiomics scores derived from LASSO were significantly different between the severe AS and non-severe AS groups in the validation set (median, 1.563 vs. 0.197, respectively, p < 0.001). A radiomics prediction model based on feature selection by LASSO + model classifier by XGBoost showed the highest c-index of 0.921 (95% confidence interval [CI], 0.869-0.973) in the validation set. Compared to prediction models based on AVC volume and score (c-indexes of 0.894 [95% CI, 0.815-0.948] and 0.899 [95% CI, 0.820-0.951], respectively), eight and three of the nine radiomics prediction models showed higher discrimination abilities for severe AS. However, the differences were not statistically significant (p > 0.05 for all). Conclusion: Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, but the added value compared to AVC volume and score should be investigated further.

Treatment Response Evaluation by Computed Tomography Pulmonary Vasculature Analysis in Patients With Chronic Thromboembolic Pulmonary Hypertension

  • Yu-Sen Huang;Zheng-Wei Chen;Wen-Jeng Lee;Cho-Kai Wu;Ping-Hung Kuo;Hsao-Hsun Hsu;Shu-Yu Tang;Cheng-Hsuan Tsai;Mao-Yuan Su;Chi-Lun Ko;Juey-Jen Hwang;Yen-Hung Lin;Yeun-Chung Chang
    • Korean Journal of Radiology
    • /
    • 제24권4호
    • /
    • pp.349-361
    • /
    • 2023
  • Objective: To quantitatively assess the pulmonary vasculature using non-contrast computed tomography (CT) in patients with chronic thromboembolic pulmonary hypertension (CTEPH) pre- and post-treatment and correlate CT-based parameters with right heart catheterization (RHC) hemodynamic and clinical parameters. Materials and Methods: A total of 30 patients with CTEPH (mean age, 57.9 years; 53% female) who received multimodal treatment, including riociguat for ≥ 16 weeks with or without balloon pulmonary angioplasty and underwent both non-contrast CT for pulmonary vasculature analysis and RHC pre- and post-treatment were included. The radiographic analysis included subpleural perfusion parameters, including blood volume in small vessels with a cross-sectional area ≤ 5 mm2 (BV5) and total blood vessel volume (TBV) in the lungs. The RHC parameters included mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), and cardiac index (CI). Clinical parameters included the World Health Organization (WHO) functional class and 6-minute walking distance (6MWD). Results: The number, area, and density of the subpleural small vessels increased after treatment by 35.7% (P < 0.001), 13.3% (P = 0.028), and 39.3% (P < 0.001), respectively. The blood volume shifted from larger to smaller vessels, as indicated by an 11.3% increase in the BV5/TBV ratio (P = 0.042). The BV5/TBV ratio was negatively correlated with PVR (r = -0.26; P = 0.035) and positively correlated with CI (r = 0.33; P = 0.009). The percent change across treatment in the BV5/TBV ratio correlated with the percent change in mPAP (r = -0.56; P = 0.001), PVR (r = -0.64; P < 0.001), and CI (r = 0.28; P = 0.049). Furthermore, the BV5/TBV ratio was inversely associated with the WHO functional classes I-IV (P = 0.004) and positively associated with 6MWD (P = 0.013). Conclusion: Non-contrast CT measures could quantitatively assess changes in the pulmonary vasculature in response to treatment and were correlated with hemodynamic and clinical parameters.

Image Quality and Radiation Dose of High-Pitch Dual-Source Spiral Cardiothoracic Computed Tomography in Young Children with Congenital Heart Disease: Comparison of Non-Electrocardiography Synchronization and Prospective Electrocardiography Triggering

  • Goo, Hyun Woo
    • Korean Journal of Radiology
    • /
    • 제19권6호
    • /
    • pp.1031-1041
    • /
    • 2018
  • Objective: To compare image quality and radiation dose of high-pitch dual-source spiral cardiothoracic computed tomography (CT) between non-electrocardiography (ECG)-synchronized and prospectively ECG-triggered data acquisitions in young children with congenital heart disease. Materials and Methods: Eighty-six children (${\leq}3$ years) with congenital heart disease who underwent high-pitch dual-source spiral cardiothoracic CT were included in this retrospective study. They were divided into two groups (n = 43 for each; group 1 with non-ECG-synchronization and group 2 with prospective ECG triggering). Patient-related parameters, radiation dose, and image quality were compared between the two groups. Results: There were no significant differences in patient-related parameters including age, cross-sectional area, body density, and water-equivalent area between the two groups (p > 0.05). Regarding radiation dose parameters, only volume CT dose index values were significantly different between group 1 ($1.13{\pm}0.09mGy$) and group 2 ($1.07{\pm}0.12mGy$, p < 0.02). Among image quality parameters, significantly higher image noise ($3.8{\pm}0.7$ Hounsfield units [HU] vs. $3.3{\pm}0.6HU$, p < 0.001), significantly lower signal-to-noise ratio ($105.0{\pm}28.9$ vs. $134.1{\pm}44.4$, p = 0.001) and contrast-to-noise ratio ($84.5{\pm}27.2$ vs. $110.1{\pm}43.2$, p = 0.002), and significantly less diaphragm motion artifacts ($3.8{\pm}0.5$ vs. $3.7{\pm}0.4$, p < 0.04) were found in group 1 compared with group 2. Image quality grades of cardiac structures, coronary arteries, ascending aorta, pulmonary trunk, lung markings, and chest wall showed no significant difference between groups (p > 0.05). Conclusion: In high-pitch dual-source spiral pediatric cardiothoracic CT, additional ECG triggering does not substantially reduce motion artifacts in young children with congenital heart disease.

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.

전자선 단층 촬영을 이용한 관상동맥 우회로 개존의 비침습적 평가 (Noninvasive Evaluation of Coronary Artery Bypass Graft Patency by Electron Beam Tomography)

  • 최규옥;김호석;조범구
    • Journal of Chest Surgery
    • /
    • 제32권8호
    • /
    • pp.693-701
    • /
    • 1999
  • 최근 혈관 질환의 진단을 위한 비침습적 영상이 발달하면서, 기존의 도자술은 중재적 치료에 국한되는 실 정이다. 그러나 관상동맥이나 우회로는 작은 직경, 심박동 움직임 등으로 도자술이 아직도 진단에 필수적이 며, 비침 응\ulcorner영상 진단의 마지막 도전 영역이다. 전자선 단층 촬영기는 높은 시간 해상능으로 심장 영상을 얻을 수 있다. 전자선 단층 촬영을 이용하여 모관상 동맥 협착이나 관상동맥 우회로 이식술 후 개존성의 평 가가 시도되고 있으며, 이중 관상동맥 우회로술 평가의 정확도는 매우 높아서 임상 적용이 가능하다. 저자와 다른 연구자의 경험에 의하면 복재 정맥은 넓은 직경, 비교적 짧고 직선적인 경로, 심박동에 덜 영 향 받음으로써 EBT조영술의 정확도가 높았다. 전향적 민감도와 특이도가 각각 92%, 97%를 보였다. 그러나 위양성과 위음성을 보인 두 예는 후향적으로 분석 할 때 경험 부족에 의한 초기의 판독 오류로 사료되어 복 재 정맥의 경우 후향적으로는 100%의 정확도를 보였다. 반면 내유동맥 이식혈관은 작은 내경과 주변의 수술 클립에 의한 인공산물로 개존성을 확인하기가 대체로 어려웠고, 역동적 검사를 병행하여 우회로내 혈류를 확인하는 것이 필요하다. 내유동맥의 경우 상대적으로 정확도가 낮아 민감도, 특이도가 각각 100%, 80%를 보였으며, 위양성을 보인 2예는 후향적으로도 개존을 확인할 수 없었다. 전자선 단층 촬영 혈관 조영술은 관상 동맥 우 막\ulcorner이식술 후의 우회 혈관 개존성의 평가, 특히 복재 정맥 우회로의 경우 매우 정확도가 높은 비침습적 검사로써, 임상 적용이 기대된다. 앞으로 촬영 기기와 영상 재구성 software의 발달로 정확도를 더욱 높일 수 있는 잠재성이 있다.

  • PDF

Myocardial Coverage and Radiation Dose in Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source CT

  • Masafumi Takafuji;Kakuya Kitagawa;Masaki Ishida;Yoshitaka Goto;Satoshi Nakamura;Naoki Nagasawa;Hajime Sakuma
    • Korean Journal of Radiology
    • /
    • 제21권1호
    • /
    • pp.58-67
    • /
    • 2020
  • Objective: Third-generation dual-source computed tomography (3rd-DSCT) allows dynamic myocardial CT perfusion imaging (dynamic CTP) with a 10.5-cm z-axis coverage. Although the increased radiation exposure associated with the 50% wider scan range compared to second-generation DSCT (2nd-DSCT) may be suppressed by using a tube voltage of 70 kV, it remains unclear whether image quality and the ability to quantify myocardial blood flow (MBF) can be maintained under these conditions. This study aimed to compare the image quality, estimated MBF, and radiation dose of dynamic CTP between 2ndDSCT and 3rd-DSCT and to evaluate whether a 10.5-cm coverage is suitable for dynamic CTP. Materials and Methods: We retrospectively analyzed 107 patients who underwent dynamic CTP using 2nd-DSCT at 80 kV (n = 54) or 3rd-DSCT at 70 kV (n = 53). Image quality, estimated MBF, radiation dose, and coverage of left ventricular (LV) myocardium were compared. Results: No significant differences were observed between 3rd-DSCT and 2nd-DSCT in contrast-to-noise ratio (37.4 ± 11.4 vs. 35.5 ± 11.2, p = 0.396). Effective radiation dose was lower with 3rd-DSCT (3.97 ± 0.92 mSv with a conversion factor of 0.017 mSv/mGy∙cm) compared to 2nd-DSCT (5.49 ± 1.36 mSv, p < 0.001). Incomplete coverage was more frequent with 2nd-DSCT than with 3rd-DSCT (1.9% [1/53] vs. 56% [30/54], p < 0.001). In propensity score-matched cohorts, MBF was comparable between 3rd-DSCT and 2nd-DSCT in non-ischemic (146.2 ± 26.5 vs. 157.5 ± 34.9 mL/min/100 g, p = 0.137) as well as ischemic myocardium (92.7 ± 21.1 vs. 90.9 ± 29.7 mL/min/100 g, p = 0.876). Conclusion: The radiation increase inherent to the widened z-axis coverage in 3rd-DSCT can be balanced by using a tube voltage of 70 kV without compromising image quality or MBF quantification. In dynamic CTP, a z-axis coverage of 10.5 cm is sufficient to achieve complete coverage of the LV myocardium in most patients.

이중 에너지 전산화 단층촬영 ECG Gating High Pitch Chest Pain Protocol 모드를 이용한 방사선량과 영상 품질에 관한 연구 (A Study on Radiation Dose and Image Quality using Dual Energy Computed Tomography ECG Gating High Pitch Chest Pain Protocol Mode)

  • 김경립;성순기;김창현;곽종혁
    • 한국방사선학회논문지
    • /
    • 제16권1호
    • /
    • pp.7-13
    • /
    • 2022
  • 본 연구는 심전도 게이팅을 한 방법과 심전도 게이팅 없이 검사하는 방법으로 검사하여 대동맥 뿌리 영상을 비교하는 것이며 high pitch(flash) chest pain protocol 방법으로 검사한 영상들과 기존의 방식으로 심전도 게이팅 없이 검사한 환자의 대동맥 뿌리 영상의 질환 유무를 관찰하였다. High pitch(flash) chest pain protocol과 일반적인 chest pain protocol로 AAPM 팬텀을 스캔하였으며 이렇게 획득된 팬텀 영상을 가지고 동일한 영상 품질을 가지는 파라메타 값을 조절하고 방사선량, 즉 CTDI 값을 비교해 보았다. 심전도 게이팅을 함으로 해서 상행대동맥의 이미지 왜곡은 기존의 심전도 게이팅을 하지 않은 검사방법보다 월등하게 감소시킬 수 있었고 대동맥 뿌리의 영상 품질은 향상되었다. 영상 이미지 품질의 차이를 보이지 않는 파라메타 범위 내에서, high-pitch chest pain protocol로 검사하였을 때 CTDI 값이 더 낮게 나왔으므로 방사선량 감소에도 이점이 있음을 알 수 있었다. 심장과 관련된 분야에서 선량 감소 모드를 이용하여 대동맥 박리와 같은 진단 분야에 응용하여 적용한다면 획기적인 피폭선량 감소 효과뿐만 아니라 빠른 진단과 함께 신속한 치료가 필요한 환자들에게 매우 중요한 검사방법이 될 것으로 사료된다.

관상동맥 석회화 CT에서 측정한 대동맥 전개: 저위험 환자군에서의 정상 범위 (Aortic Unfolding Measurement Using Non-Contrast Cardiac CT: Normal Range of Low-Risk Subjects)

  • 이지원;최병욱
    • 대한영상의학회지
    • /
    • 제83권2호
    • /
    • pp.360-371
    • /
    • 2022
  • 목적 이 연구의 목적은 관상동맥 석회화 CT에서 측정한 대동맥 폭으로 정의한 대동맥 전개(aortic unfolding)에 영향을 미치는 요인을 평가하고 대동맥 전개의 정상 범위를 알아보는 것이다. 대상과 방법 이 후향적 연구에서 우리는 2015년 6월부터 2018년 6월까지 건강검진을 목적으로 관상동맥 석회화 CT를 시행 받은 924명의 무증상 성인에서 대동맥 전개를 측정했다. 다변량 회귀 분석을 사용하여 대동맥 전개에 영향을 미치는 요인들을 평가했다. 그 후 대동맥 전개와 관련된 위험 요소가 있는 성인을 제외되고 283명의 성인이 대동맥 전개의 정상값 분석에 포함되었다. 대동맥 전개의 평균, 표준 편차 및 상한값이 계산되었다. 결과 성별, 나이, 관상동맥 석회화 점수, 체질량지수, 체 표면적, 고혈압, 좌심실 비대, 혈장 크레아티닌, 흡연은 대동맥 전개와 유의한 관계가 있었다. 평균 대동맥 전개값은 남성의 경우 102.2 ± 12.8 mm, 여성의 경우 93.1 ± 10.7 mm였다. 대동맥 전개값은 연령이 증가할 수록(10년당 9.6 mm)으로 증가했다. 결론 관상동맥 석회화 CT에서 측정된 대동맥 전개는 심혈관 위험 인자들과 관련이 있었다. 또한 본 연구에서 저위험군에서 대동맥 전개의 정상 범위를 나이, 성별 및 체표표면적당으로 정의하였다.