• Title/Summary/Keyword: Cardiac SPECT

Search Result 55, Processing Time 0.029 seconds

State of the Art of Imaging Equipment and Tools for Nuclear Cardiology (심장핵의학 검사를 위한 영상장비 및 도구의 최신동향)

  • Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.165-173
    • /
    • 2009
  • Nuclear cardiology in Korea is less active, compared to nuclear oncology, but it has been specialized and ramified. Lately, sophisticated nuclear cardiac imaging methods provide more convenience for patients. It is necessary to accurately estimate the recent progress in the imaging devices for nuclear cardiology. Myocardial perfusion imaging is a well established study to evaluate heart function. Myocardial perfusion SPECT and PET have been used for assessment of coronary artery disease with various radiopharmaceuticals. And of late, the development of advanced imaging devices - multi-pinhole technique and high definition imaging technique - and software made the scanning time shorter and expanded the application field. Therefore, it is required to review the nuclear cardiology hardware/software for the clinical practice and research. In this review, the characteristics about recently-developed SPECT/PET and software for nuclear cardiology are described. It is hoped that this information would contribute to improving the activity of nuclear cardiac research in Korea where the research for the fusion imaging combining a and nuclear imaging is drawing more attention.

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

Diagnosis of Coronary Artery Disease using Myocardial Perfusion SPECT in Patients with Diabetes Mellitus: Analysis of Risk Factors (당뇨병 환자에서 심근관류 SPECT을 이용한 관동맥질환의 진단: 위험인자 분석)

  • Seo, Ji-Hyoung;Kang, Seong-Min;Bae, Jin-Ho;Jeong, Shin-Young;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2006
  • Purpose: Diabetes mellitus (DM) is a critical disease with higher rates of cardiovascular morbidity and mortality due to myocardial ischemia and infarction. There is glowing interest in how to determine high-risk patients who are candidates for screening testing. This study was performed to evaluate the incidence of coronary artery disease (CAD) in diabetic patients detected by Tc-99m MIBI myocardial perfusion SPECT (MPS) and to assess risk factors of CAD and cardiac hard events. Subjects and Methods: 203 diabetic patients (64 male, mean age $64.1{\pm}9.0$ years) who underwent MPS were included between Jan 2000 and July 2004. Cardiac death and nonfatal myocardial infarction (MI) were considered as hard events, and coronary angioplasty and bypass surgery >60 days after testing were considered as soft events. The mean follow-up period was $36{\pm}18$ months. Patients underwent exercise (n=6) or adenosine stress (n=197) myocardial perfusion SPECT. Results: Perfusion defects on MPS were detected in 28.6% (58/203) of the patients. There was no cardiac death but 11 hard events were observed. The annual cardiac hard event rate was 1.1%. In univariate analysis of clinical factors, typical anginal pain, peripheral vascular disease, peripheral polyneuropathy, and resting ECG abnormality were significantly associated with the ocurrence of hard events. Anginal pain, peripheral vascular disease, and resting ECG abnormality remained independent predictors of nonfatal MIs with multivariate analysis. Abnormal SPECT results were significantly associated with high prevalence of hard events but not independent predictors on uni- and multivariate analyses. Conclusion: Patients who were male, had longer diabetes duration (especially over 20 years), peripheral vascular disease, peripheral polyneuropathy, or resting ECG abnormality had higher incidence of CAD. Among clinical factors in diabetic patients, typical angina, peripheral vascular disease, peripheral polyneuropathy, and resting ECG abnormality were strong predictors of hard events.

Clinical Application of Cardiac Hybrid Imaging in Coronary Artery Disease (관상동맥질환에서 심장 하이브리드 영상의 임상적 이용)

  • Gho, Ihn-Ho;Kong, Eun-Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Constant technological developments in coronary artery disease have contributed to the assessment of both the presence of coronary stenosis and its hemodynamic consequences. Hence, noninvasive imaging helps guide therapeutic decisions by providing complementary information on coronary morphology and on myocardial perfusion and metabolism. This can he done using single photon emission computed tomography (SPECT) or positron emission tomography (PET) and multidetector CT (MDCT). Advances in image-processing software and the advent of SPECT/CT and PET/CT have paved the way for the combination of image datasets from different modalities, giving rise to hybrid imaging. Three dimensional cardiac hybrid imaging helped to confirm hemodynamic significance in many lesions, add new lesions such as left main coronay artery disease, exclude equivocal defects, correct the corresponding arteries to their allocated defects and identify culprit segment. Cardiac hybrid imaging avoids the mental integration of functional and morphologic images and facilitates a comprehensive interpretation of coronaty lesions and their pathophysiologic adequacy by three dimensional display of fused images, and allows the best evaluation of myocardial territories and the coronary-artery branches that serve each territory. This integration of functional and morphological information were feasible to intuitively convincing and might facilitate development of a comprehensive non-invasive assessment of coronary artery disease.

  • PDF

Diagnosis of Coronary Artery Disease Using Myocardial Perfusion SPECT (심근 SPECT를 이용한 관상동맥질환의 진단)

  • Won, Kyoung-Sook;Kim, Hae-Won
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.196-202
    • /
    • 2009
  • Myocardial perfusion scintigraphy is currently by far the most commonly performed cardiac nuclear study, constituting approximately one third of all nuclear medicine procedure. It plays an important role in the diagnosis, prognosis, risk assessment and management of heart disease. Aim of this review is to describe recent evolution of myocardial perfusion imaging on the focus of diagnosis of coronary artery disease. In addition, current status of other imaging modalities will be reviewed.

Quantitative gated myocardial perfusion SPECT (정량적 게이트 심근관류 SPECT)

  • Ahn, Byeong-Cheol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.207-218
    • /
    • 2003
  • Myocardial perfusion imaging has been increasingly used to provide prognostic data and guidance on the choice of appropriate management of patients with known or suspected coronary artery disease. The electrocardiogram gated myocardial SPECT program is corning into wide use with an advent of $^{99m}Tc-labeled$ tracers and an improvement of SPECT machines. The gated technique permits measurement of important cardiac prognostic indicators without any further discomforts or radiation burden in patients underwent standard myocardial perfusion SPECT. In addition, gated study significantly improves diagnostic yield by reducing the number of borderline interpretations and could find myocardial stunning and viable myocardium. Gated single photon emission computed tomography (SPECT) imaging allows the automated calculation of end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and the assessment of regional wall motion and thickening, and it have dramatically improved assessment of coronary artery disease in routine nuclear practice. This allows the simultaneous assessment of both perfusion and function within the same acquisition, and serves as a cost-effective technique for providing more diagnostic data with fewer diagnostic tests. Because the diagnostic and prognostic power derived from knowledge of left ventricular function can be added to that provided by assessing myocardial perfusion, gated SPECT imaging has rapidly gained widespread acceptance and is now used on a routine clinical basis in a growing number of laboratories, including South Korea. The gated SPECT technique for measurement of left ventricular parameters has been validated against a variety of well established techniques. In this work, overview of gated myocardial perfusion SPECT focus on functional parameters is presented.

Usefulness of Myocardial Perfusion SPECT after Percutaneous Coronary Intervention (PCI) (경피적 관상동맥 중재술(Percutanerous Coronary Intervention; PCI) 후 심근 관류 SPECT의 유용성)

  • Lee, Jong-Jin;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.114-117
    • /
    • 2005
  • As the indication of percutaneous coronary intervention (PCI) has expanded to the more difficult and complicated cases, frequent restenosis is still expected after PCI. According to AHA/ACC guideline of the present time, routine use of myocardial perfusion single photon emission tomography (SPECT) is not recommended after coronary intervention, but symptom itself or exercise EKG is not enough for the detection of restensis or for the prediction of event-free survival. In high risk and/or symptomatic subjects, direct coronary angiography is required myocardial perfusion SPECT could detect restenosis in 79% of the patients if performed 2 to 9 months after PCI. Reversible perfusion decrease in the myocardial perfusion SPECT is known to be the major prognostic indicator of major adrerse cardiac event in PCI patients and also the prognosis is benign in the patients without reversible perfusion decrease. Though the cumulated specificity is 79% in the literature and optimal timing of myocardial perfusion SPECT is in controversy, SPECT is recommended even in asymptomatic patients at 3 to 9 months after PCI. Considering the evidences recently reported in the literature, myocardial perfusion SPECT is useful for risk stratification and detection of coronary artery restenosis requiring re-intervention in the asymptomatic patients after PCI.

Radius Intermedius Stenosis Induced Myocardial Perfusion Defect: Provened by the Fusion Images of Myocardial Perfusion SPECT and 64 Channel CTA (심근관류 SPECT와 64채널 전산화 단층혈관 촬영 사진 융합으로 증명된 radius intermedius 협착에 의한 심근관류 저하)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Chun, Kyung-Ah;Won, Kyu-Chang;Lee, Hyung-Woo;Park, Jong-Seon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.77-78
    • /
    • 2008
  • A 71-year-old woman was assigned to our department for Tc-99m myocardial perfusion SPECT(MPS) and coronary CT angiography. She admitted for substernal pain, via the ER, 2 days ago. The heart was scanned after intravenous injection of 925 MBq of $^{99m}Tc$-sestamibi adenosine-induced stress SPECT using dual head gamma camera (Hawkeye, GE healthcare. USA). The MPS shows decreased tracer uptake in the apical & mid area of anterior & lateral wall and mid & basal inferior wall. Coronary CT angiograph was obtained using Discovery VCT (GE healthcare). 3D angiography portrayed significant stenosis of ramus intermedius(RI) and posterolateral branch of right coronary artery(PLB) with fibrocalcified plaque. Two images were fused using Cardiac IQ fusion softwear package (Advantage workstation 4.4, GE healthcare) The fusion images explain the perfusion defect of anterior, lateral and inferior wall is due to stenosis of the RI and PLB. And 3 days later, coronary angiography was done and revealed the marked stenosis of RI and PLB. Then balloon angioplasty and stent was instituted in RI. Cardiac SPECT/CT fusion imaging provides additional information about hemodynamic relevance and facilitates lesion interpretation by allowing exact allocation of perfusion defects to its subtending coronary artery.

Fusion of 3D Cardiac SPECT and 64-Channel-CT Angiography Using Personal Computer in Functionally Relevant Coronary Artery Stenosis (개인용 컴퓨터를 이용한 기능 유관성 관상동맥 협착증의 삼차원 심장스펙트 사진과 64채널 전산화 단층 혈관촬영사진과의 융합)

  • Bahk, Yong-Whee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.252-254
    • /
    • 2007
  • Image fusion is fast catching attention as Wagner pointed out in his 2006 version of the recent progress and development presented at the annual meeting of Society of Nuclear Medicine. Prototypical fusion of bone scan and radiograph was already attempted at in 1961 when Fleming et al. published an article on strontium-85 bone scan. They simply superimposed dot scan on radiograph enabling simultaneous assessment of altered bone metabolism and local bone anatomy. Indeed the parallel reading of images of bone scan and radiography, CT, MRI or ultrasonography has been practiced in nuclear medicine long since. It is fortunate that recent development of computer science and technology along with the availability of refined CT and SPECT machines has permitted us to open a new avenue to digitally produce precise fusion image so that they can readily be read, exchanged and disseminated using internet. Ten years ago fusion was performed using Bresstrahlung SPECT/CT and it is now achievable by PET/CT and SPECT/CT software and SPECT/CT hardware. The merit of image fusion is its feasibility of reliable assessment of morphological and metabolic change. It is now applicable not only to stationary organs such as brain and skeleton but also to moving organs such as the heart, lung and stomach. Recently, we could create useful fusion image of cardiac SPECT and 64-channel CT angiograph. The former provided myocardial metabolic profile and the latter vascular narrowing in two patients with coronary artery stenosis and myocardial ischemia. Arterial stenosis was severe in Case 1 and mild in Case 2.

Automated Functional Morphology Measurement Using Cardiac SPECT Images (SPECT 영상을 사용한 기능적 심근형태의 자동 계측법 개발)

  • Choi, Seok-Yoon;Ko, Seong-Jin;Kang, Se-Sik;Kim, Chang-Soo;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.133-139
    • /
    • 2012
  • For the examination of nuclear medicine, myocardial scan is a good method to evaluate a hemodynamic importance of coronary heart disease. but, the automatized qualitative measurement is additionally necessary to improve the decoding efficiency. we suggests the creation of cardiac three-dimensional model and model of three-dimensional cardiac thickness as a new measurement. For the experiment, cardiac reduced cross section was obtained from SPECT. Next, the pre-process was performed and image segmentation was fulfilled by level set. for the modeling of left cardiac thickness, it was realized by applying difference equation of two-dimensional laplace equation. As the result of experiment, it was successful to measure internal wall and external wall and three-dimensional modeling was realized by coordinate. and, with laplace formula, it was successful to develop the thickness of cardiac wall. through the three-dimensional model, defects were observed easily and position of lesion was grasped rapidly by the revolution of model. The model which was developed as the support index of decoding will provide decoding information to doctor additionally and reduce the rate of false diagnosis as well as play a great role for diagnosing IHD early.