• Title/Summary/Keyword: Carcinogenic risk

Search Result 184, Processing Time 0.028 seconds

DIETARY RISK ASSESSMENT FOR POLYCYCLIC AROMATIC HYDROCARBONS IN FOOD

  • Hyomin LEE;Eunkyung YOON;Yoonho CHOI;Gunyoung LEE;Yonsook JO;Kisung KWON;Soyoung CHUNG;Myungchul KIM;Jisun YANG
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.136-136
    • /
    • 2002
  • Polycyclic aromatic hydrocarbons(PAHs) vary in their carcinogenic potencies. The more potent PAHs carcinogens are 3-methylcholantheren and 7, 12- dimethyl benzo(a)anthracene, while dibenzo(a, c)anthracene has very little carcinogenic activity. Risk assessment of chemical mixture containing various congeners which toxic potency are each different, are conducted using toxic equivalency factors(TEFs).(omitted)

  • PDF

Health Risk of Airborne Complex Mixtures Based on their Mutagenicity (대기중 복합물질의 돌연변이원성과 인체 위해도)

  • Park, Seong-Eun;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.269-278
    • /
    • 1996
  • Airborne suspended particulates were collected by an Andersen high volume air sampler in a traffic area of Seoul from September 1990 to August 1991. Origanic matter extracted from particulates, their fractions, namely acidic, basic, neutral and carcinogenic subfractions (PAHs, nitroarenes) in neutral fractions were assayed for mutagenicity on TA98, TA100 and TA98NR deficient Salmonella strains, use of the pre-incubation method. The relative contribution to total mutanenicity of organic matters was highest in neutral fraction and was lowest in basic fraction. Among subfractions, that of neutral fraction was higher nitroarenes subfraction compared to PAHs subfraction. While the carcinogenic effect of benzo[a]pyrene was calculated as 0.96 persons/million persons based on unit risk estimates by extrapolation method, life time excess cancer risk estimate of EOM, neutral, PAH fraction based on their mutagenicity was calculated as 52, 42, 3.8 persons/million persons, respectively. These findings indicate that the mutagenic hazard of the partciculate, air organic complex mixture, may be dependent upon the mutagen composition in the particulate and interactions each of them. Therfore, health risk from air organic complex mixtures based on mutagenicity might be useful indicator for evaluation of actual risk.

  • PDF

Comparative Risk Assessment Methodology: An Application to Air Pollution (비교 위험도 평가 방법의 대기 오염에 대한 적용 연구)

  • Lee, Jin-Hong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.100-104
    • /
    • 1992
  • The research in this paper centers on a comparative risk assessment for nearby air pollution by carcinogenic metal emission from municipal solid waste incinerators. If a substance is identified as a potential human carcinogen, the carcinogenicity may be related to the chemical form of a substance and the route of exposure. This type of information with regard to carcinogenic uncertainty is incorporated into hazard quantification. In addition to the dioxin emission, the metal emission from municipal solid waste incineration is found to be a major contributor to human cancer risk via the inhalation route. The magnitude of risk by metals is about 5 times greater than that of risk by dioxins. Hexavalent form of chromium and cadmium compounds are major contributors to cancer risk from metal emission. In addition, hexavalent chromium is known to be human carcinogen while 2,3,7,8-TCDD is known to be only probable human carcinogen.

  • PDF

Ingestion Exposure to Nitrosamines in Chlorinated Drinking Water

  • Kim, He-Kap;Han, Ki-Chan
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.2.1-2.7
    • /
    • 2011
  • Objectives: N-Nitrosodimethylamine (NDMA) is classified as a probable human carcinogen by the United States Environmental Protection Agency (US EPA) and is formed during the chlorination of municipal drinking water. In this study, selected nitrosamines were measured in chlorinated drinking water collected from Chuncheon, Kangwon-do, Republic of Korea, and a risk assessment for NDMA was conducted. Methods: Twelve water samples were collected from 2 treatment plants and 10 household taps. Samples were analyzed for 6 nitrosamines via solid-phase extraction cleanup followed by conversion to dansyl derivatives and high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Considering the dietary patterns of Korean people and the concentration change of NDMA by boiling, a carcinogenic risk assessment from ingestion exposure was conducted following the US EPA guidelines. Results: NDMA concentrations ranged between 26.1 and 112.0 ng/L. NDMA in water was found to be thermally stable, and thus its concentration at the end of boiling was greater than before thermal treatment owing to the decrease in water volume. The estimated excess lifetime carcinogenic risk exceeded the regulatory baseline risk of $10^{-5}$. Conclusions: This result suggests that more extensive studies need to be conducted on nitrosamine concentration distributions over the country and the source of relatively high nitrosamine concentrations.

Determining the reuse of metal mine wastes based on leaching test and human health risk assessment

  • Ju, Won Jung;Hwang, Sun Kyung;Jho, Eun Hea;Nam, Kyoungphile
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.82-90
    • /
    • 2019
  • Meeting the regulations based on the short-term leaching tests may not necessarily assure the environmental and human health safety of reusing mine wastes. This study investigated heavy metal leachability of four metal mine waste samples (e.g., Z, Y, H, and M) and human health risk of reusing them as construction materials. The heavy metal leachability did not depend on the total heavy metal contents. For example, the Z sample contained greater amounts of As and Fe than Zn, but the leachates contained only Zn at a detectable level. This can be attributed to the crystalline structure and heavy metal fractions of the mine wastes. The leaching test results suggested that the four mine waste samples are potentially reusable. But the Z and M samples reused in industrial areas imposed carcinogenic risks. This was largely attributed to As that is exposed via dermal contact. The Y and H samples reused in residential areas imposed carcinogenic risk. The major exposure route was the ingestion of crops grown on the mine wastes and Cr was the major concern. The two-stage assessment involving leaching tests and risk assessment can be used to promote safe reuse of mine wastes.

Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Lee, Je-Bong;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2011
  • This study focused on health risk assessment via multi-routes of As exposure to establish a target cleanup level (TCL) in abandoned mines. Soil, ground water, and rice samples were collected near ten abandoned mines in November 2009. The As contaminations measured in all samples were used for determining the probabilistic health risk by Monte-Carlo simulation techniques. The human exposure to As compound was attributed to ground water ingestion. Cancer risk probability (R) via ground water and rice intake exceeded the acceptable risk range of $10^{-6}{\sim}10^{-4}$ in all selected mines. In particular, the MB mine showed the higher R value than other mines. The non-carcinogenic effects, estimated by comparing the average As exposure with corresponding reference dose were determined by hazard quotient (HQ) values, which were less than 1.0 via ground water and rice intake in SD, NS, and MB mines. This implied that the non-carcinogenic toxic effects, due to this exposure pathway had a greater possibility to occur than those in other mines. Besides, hazard index (HI) values, representing overall toxic effects by summed the HQ values were also greater than 1.0 in SD, NS, JA, and IA mines. This revealed that non-carcinogenic toxic effects were generally occurred. The As contaminants in all selected mines exceeded the TCL values for target cancer risk ($10^{-6}$) through ground water ingestion and rice intake. However, the As level in soil was greater than TCL value for target cancer risk via inadvertent soil ingestion pathway, except for KK mine. In TCL values for target hazard quotient (THQ), the As contaminants in soil did not exceed such TCL value. On the contrary, the As levels in ground water and polished rice in SD, NS, IA, and MB mines were also beyond the TCL values via ground water and rice intake. This study concluded that the health risks through ground water and rice intake were greater than those though soil inadvertent ingestion and dermal contact. In addition, it suggests that the abandoned mines to exceed the risk-based TCL values are carefully necessary to monitor for soil remediation.

Study on Health Risk Assessment of Carcinogenic Chemicals in Drinking Water (음용수 중 유해 화학 물질에 대한 위해성 평가에 관한 연구 - I. 발암성 화학 물질을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Kim, Jong-Man;Park, Seong-Eun;Yang, Ji-Yeon;Lee, Ja-Koung;Hwang, Man-Sik;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.1-14
    • /
    • 1995
  • The purpose of this research is to assess the health risk of pollutants in drinking water and recommend the guidelines and management plans for maintaining good quality of drinking water. This study has been funded as a national project for three years from 1992 to 1995. This study(the second year, 1993-1994) was conducted to monitor 32 species of carcinogenic chemicals such as volatile organic compounds(VOCs), polynuclear aromatic hydrocarbons(PAHs), pesticides and heavy metals of drinking water at some area in six cities of Korea, and evaluate health risk due to these chemicals through four main steps of risk assessment in drinking water. In hazard identification, 32 species of carcinogenic chemicals were identified by the US EPA classification system. In the step of exposure assessment, sampling of raw, treated and tap water from the public water supply system had been conducted from 1993 to 1994, and 32 chemicals were analyzed. In dose-response assessment, cancer potencies, unit risk estimates and virtually safe doses of carcinogens were obtained by TOX-RISK (Version 3.1). In risk characterization of detected chemicals, health risk due to carcinogens such as vinyl chloride, carbon tetrachloride, dichloromethane, 1, 2-dichloromethane, chloroform, benzene and arsenic of tap water in several cities exceeded 10$^{-5}$ level. We suggest that non-regulated chemicals which exceed 10$^{-5}$ excess cancer risk level, such as vinyl chloride, carbon tetrachloride and 1, 2-dichloroethane, should be monitored periodically and be regulated by the Drinking Water Management Act, and database for exposure parameter of our own situation should be established.

  • PDF

Health Risk Assessment and VOCs Levels of Residents in Industrial Area (광양만권 공단지역 일부 지역 주민들의 VOCs 노출농도 및 건강위해성 평가)

  • Lee, Che-Won;Choi, Su-Hyeon;Hong, Sung-Chul;Chung, Eun-Kyung;Chung, Yong-Taik;Yang, Won-Ho;Lee, Jong-Dae;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1373-1382
    • /
    • 2011
  • This research had been conducted from May to October 2007, studying 110 residents of G, Y, H industrial area in Jun-nam province. It is designed to understand the difference in levels of indoor, outdoor and personal exposure to VOCs(benzene, toluene, Ethylbenzene) and a health risk assessment was conducted to see if there was any fatal cause from carcinogenic or non - carcinogenic elements from a case group and a control group in all areas as well as each different area. In the case of benzene in the air, the geometric levels for the case group are indoor, outdoor and personal exposure; a higher than for the control group. As a results of the Monte - Carlo study about benzene, it shows that the case group's carcinogenicity is higher than that of the control group and it also shows that, on the CTE, RME condition and Monte - Carlo analysis, all subjects are seen to exceed the carcinogenicity tolerance $10^{-6}$ of US EPA. In the case of toluene, ethylbenzene on the CTE, RME condition and Monte - Carlo analysis, these do not exceed the non - carcinogenic standard of 1, but toluene in RME condition for both groups' personal exposure and the indoor and personal exposure of ethylbenzene in Monte - Carlo show that these seem to exceed the standard.

Determination of Human Health Risk Incorporated with Arsenic Bioaccessibility and Remediation Goals at the Former Janghang Smelter Site ((구)장항제련소 매입구역의 비소 오염도와 생물학적접근성을 반영한 위해성평가 및 정화수준 결정에 관한 연구)

  • Yang, Kyung;Kim, Young-Jin;Im, Jinwoo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.52-61
    • /
    • 2014
  • Metal concentrations in the former Janghang smelter area were determined and human health risk of arsenic (As) with bioaccessibility was investigated. Site investigation of the area within 1.5 km from the Janghang smelter showed the As concentrations of 4.8~169.8 mg/kg (avg. 37.8 mg/kg). For 85 samples out of 126 samples, As concentrations were higher than the Worrisome Level of the Korean Soil and Environment Conservation Act, and seven samples exceeded the Countermeasure Standard. Risk assessment for As incorporated with the bioaccessibility revealed that potential human health risk of the carcinogenic ($1.8{\sim}5.0{\times}10^{-5}$) was above the acceptable risk range ($10^{-5}{\sim}10^{-6}$) while the risk of the non-carcinogenic was not found. Remediation goals based on risk incorporated with bioaccessibility of As ranged from 10.8 to 20.0 mg/kg. Such difference in the remediation goals resulted from various bioaccessibility of As (i.e., between 8.7~66.3%) at the study site.