Objectives: Laboratories have various latent physical, chemical, biological, and ergonomical factors according to the diversification and fusion of research and development activities. This study aims to investigate the chemical exposure concentrations of college laboratories and evaluate their health risks, and use them as basic data to promote the health of college students. Methods: The sampling and analysis of harmful chemicals in the air in laboratories were performed using Method 1500 of the U.S. National Institute for Occupational Safety and Health (NIOSH)의 Method 1500. The harmful chemicals in the laboratories were divided into carcinogenic and non-carcinogenic chemicals. Risk assessment was performed using the cancer risk (CR) for carcinogenic chemicals and using the hazard index (HI) for non-carcinogenic chemicals. Results: The harmful chemicals in college laboratories consisted of acetone, diethyl ether, methylene chloride, n-hexane, ethyl acetate, chloroform, tetrahydrofuran, toluene, and xylenes. They showed the highest concentrations in laboratories A (acetone 0.001~2.34ppm), B (chloroform 0.95~6.35ppm), C (diethyl ether 0.08~8.68ppm), and D (acetone 0.07~14.96ppm). The risk assessment result for non-carcinogenic chemicals showed that the HI of methylene chloride was 2.052 for men and 2.333 for women, the HI of N-hexane was 4.442 for men and 5.05 for women. Thus, the HI values were higher than 1. The risk of carcinogenic chemicals is determined by an excess cancer risk (ECR) value of 1.0×10-5, which means that one in 100,000 people has a cancer risk. The ECRs of chloroform exceeded 1.0×10-5 for both men and women, indicating the possibility of cancer risk. Conclusion: College laboratories showed the possibility of non-carcinogenic health risks for methylene chloride, n-hexane, tetrahydrofuran (THF), toluene, and xylenes, and carcinogenic health risks for chloroform, methylene chloride. However, this study used the maximum values of measurements to determine the worst case, and assumed that the subjects were exposed to the corresponding concentrations continuously for 8 hours per day for 300 days per year. In consideration of the nature of laboratory environment in which people are intermittently exposed, rather than continuously, to the chemicals, the results of this study has an element of overestimation.