• 제목/요약/키워드: Carcass burial

검색결과 27건 처리시간 0.028초

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

부자재가 돼지 사체 퇴비화에 미치는 영향 (The Effects of Amendments on Composting of Swine Carcass)

  • 홍지형;최병민
    • 한국축산시설환경학회지
    • /
    • 제5권1호
    • /
    • pp.45-52
    • /
    • 1999
  • The purpose of this study is to provide information for the livestock for the livestock carcass composting operation in agricultural waste management. Burial, landfilling and incineration of livestock carcass may have environmental regulatory and economic liabilities. Dead animals amended with agricultural residues can be composted and used to promote soil fertility and reduce environmental pollution. In this study we evaluated the effect of amendments on the primary and secondary composting reaction and stability of compost. The full-scale composting bin of swine carcass in roofed system with three amendments was adequate in reaching sufficient temperature above 55$^{\circ}C$ long enough to kill the pathogen. The average temperature of the compost material in dead swine amended with corn stover increased rapidly to 64$^{\circ}C$ on the 2nd day after primary composting and dropped to near ambient temperature on the 140th day of composting. The composting with of corn stover and wheat straw are more efficient for swine carcass composting than that of sawdust. Therefore, the amendment property is an important factor in the design of composting facility.

가축전염병 예방 및 방역을 위한 개선방안 (Improvement Plan for the Prevention and Biosecurity of Animal Disease)

  • 박재홍
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.371-376
    • /
    • 2011
  • If animal disease, i.e., livestock foot-and-mouth disease, avian influenza, brings out, animals have to be disposed to prevent the virus spreading. Mainly, animals have been disposed by carcass disposal. However, If not done properly, carcass disposal can lead to environmental problems, i.e., soil and ground water pollution, etc. Therefore, various disposal methods, i.e., rendering, cremation, etc., have to be considered with burial. Also, various supplement policies are needed to prevent the animal disease. The purpose of this study was to find effective solutions for the prevention and biosecurity of animal disease.

가축 전염병 발생에 따른 소와 닭 사체의 화학적 처리 방법의 적용 (Application of chemical treatment for cattle and chicken carcasses for the control of livestock infectious diseases)

  • 이택근;오연수;고영승;배다윤;탁동섭;임채광;조호성
    • 한국동물위생학회지
    • /
    • 제45권2호
    • /
    • pp.117-124
    • /
    • 2022
  • In the event of an outbreak of a livestock epidemic, it has been considered that the existing burial-centered carcass disposal method should be improved ecofriendly for prevention of leachate and odors from burial basically in regard of pathogen inactivation. Therefore, the aim of this study is whether it was possible to treat the carcass of cattle and chickens using the chemical carcass treatment method. It was conducted to establish detailed treatment standards for the chemical treatment method of cattle and chicken carcasses based on the results of the proof of the absence of infectious diseases in cattle chickens. After inoculating cattle carcass with 10 pathogens (foot and mouth disease virus, bovine viral diarrhea virus, Mycobacterium bovis, Mycobacterium avium subsp. Paratuberculosis, Brucella abortus, Bacillus anthracis, Clostridium chauvoei, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium) and chicken carcasses with low pathogenic avian influenza virus, Clostridium perfringens type C, E. coli and Salmonella Typhimurium, these were treated at 90℃ for 5 hours in a potassium hydroxide liquid solution corresponding to 15% of the body weight. This method liquefies all cadaveric components and inactivates all inoculated pathogens by PCR and culture. Based on these results, it was possible to prove that chemical treatment of cattle and chicken carcasses is effective in killing pathogens and is a safe method without the risk of disease transmission. The chemical treatment method of livestock carcasses can be suggested as an alternative to the current domestic burial-centered livestock carcass treatment method, preventing environmental pollution, and contributing to public health.

가축 사체 매몰지 주변 토양 및 지하수의 오염도 평가 (Assessment of Soil and Groundwater Contamination at Two Animal Carcass Disposal Sites)

  • 김계훈;김권래;김혁수;이군택;이근화
    • 한국토양비료학회지
    • /
    • 제43권3호
    • /
    • pp.384-389
    • /
    • 2010
  • Outbreak of contagious diseases to livestock animals is becoming prevalent worldwide and consequently, tremendous numbers of the infected or culled stocks are buried on the ground as the most common disposal method. The buried animals can generate a wide range of detrimental components such as leachate, nutrient salts, and pathogenic bacteria, consequently contaminating the surround environment. This implies that regular investigations are required to monitor any possible detrimental environmental aspect occurred around burial sites. Therefore, the current study was conducted to investigate whether the soil and groundwater nearby the burial sites had been contaminated by the substances originated from the burial sites, which can be applied for the establishment of the ideal burial site construction design and post management scheme. For this, two different burial sites located in Cheonan and Pyeongtaek were selected. Cheonan and Pyeongtaek sites were constructed in 2004 and 2008, respectively and both contained dead poultry infected by avian influenza (AI). Soil and groundwater samples were collected around the sites followed by determination of the nutrient concentrations and bacteria (Salmonella, Camphylobacter, and Bacillus) existence in both soil and groundwater. Some of the soil samples showed higher EC, $NH_4$-N, $NO_3$-N concentration compared to those of the background (control) soils. Also the concentration of $NH_4$-N in some of the groundwater samples appeared to exceed the USEPA guideline value for drinking water (10 mg $L^{-1}$). These results indicated that the soil and groundwater were influenced by the burial site originated nutrients. In the soil, Bacillus was isolated in most soil samples while there were no detections of Salmonella and Camplylobacter. Due to the Bacillus existing mainly as a spore in the soils, it was considered that the frequent detection of Bacillus in the soil samples was attributed to the nutrients originated from the burial sites.

매몰지 침출수의 경시변화에 따른 오염물질 분해특성 (Decomposition characteristics of pollutants by time dependent variation of livestock carcass leachate)

  • 김용준;강영렬;황동건;전태완;신선경
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.338-347
    • /
    • 2017
  • 본 연구의 목적은 돼지와 소를 대상으로 우리나라 대표 토양인 사양질, 식양질, 사질의 토양에 따른 실험실 규모 가축 매몰지를 설치하여 3년동안 분해특성을 살펴보는 것이다. 그 결과 가축 매몰지역 환경조사지침에 따른 가축 매몰지 발굴금지기간인 3년을 기준으로 대부분 분해되는 것을 확인하였으며, 사체분해를 위해 중요인자로 온도, 수분, pH, 토성, 영양소, 매몰지 깊이 등 다양한 외부환경 요인이 적절히 유지되어야 할것으로 판단되었다. 또한 소의 경우가 돼지보다 빠르게 분해되었는데, 토양에 따른 분해속도를 확인한 결과 사질 > 식양질 > 사양질 순으로 분해가 이루어지는 것으로 판단되었다.

매몰 사축에 의한 침출수내 오염물질 제거 방법 (Method for contaminant removal from leachate induced by buried livestock carcasses)

  • 전해성;박준규;김건하
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.395-408
    • /
    • 2023
  • This study presents a novel method for addressing the issue of high-concentration contaminants (ammonium, phosphate, antibiotics) in leachate arising from decomposing livestock carcasses. Antibiotics, developed to eliminate microorganisms, often have low biodegradability and can persist in the ecosystem. This research proposes design elements to prevent contamination spread from carcass burial sites. The adsorbents used were low-grade charcoal (an industrial by-product), Alum-based Adsorbent (ABA), and Zeolite, a natural substance. These effectively removed the main leachate contaminants: low-grade charcoal for antibiotics (initial concentration 1.05 mg/L, removal rate 73.4%), ABA for phosphate (initial concentration 2.53 mg/L, removal rate 99.9%), and zeolite for ammonium (initial concentration 38.92 mg/L, removal rate 100.0%). The optimal mix ratio for purifying leachate is 1:1:10 of low-grade charcoal, ABA, and zeolite. The average adsorbent usage per burial site was 1,800 kg, costing KRW 2,000,000 per ton. The cost for the minimum leachate volume (about 12.4 m3) per site is KRW 2,880,000, and for the maximum volume (about 19.7 m3) is KRW 4,620,000. These findings contribute to resolving issues related to livestock carcass burial sites and suggest post-management strategies by advocating for the effective use of adsorbents in leachate purification.

가축 전염병 관리를 위한 돼지 사체의 화학적 처리 방법 (Validation of method for chemical treatment of pig carcasses for the control of livestock infectious diseases)

  • 오연수;윤석훈;탁동섭;조호성
    • 한국동물위생학회지
    • /
    • 제44권4호
    • /
    • pp.283-290
    • /
    • 2021
  • This is a study on the improvement of the chemical treatment method of the livestock carcass treatment newly introduced in the livestock infectious disease prevention method in order to improve the problems of the existing burial-centered carcass treatment method when a livestock infectious disease occurs. It was conducted to establish detailed treatment standards for the chemical treatment method of pig carcasses based on the results of proof of the absence of infectious diseases in pigs. After inoculating pig carcasses with 10 pathogens (6 viruses [FMDV, ASFV, CSFV, PCV2, PRRSV, PEDV] and 4 bacteria [Lawsonia intracellularis, Clostridium perfringens type C, E. coli, Salmonella Typhimurium]) It was treated at 90℃ for 5 hours in a potassium hydroxide (KOH) liquid solution corresponding to 15% of the body weight. This method liquefies all cadaveric components and inactivates all inoculated pathogens. Based on these results, it was possible to prove that chemical treatment of pig carcasses is effective in killing pathogens and is a safe method without the risk of disease transmission. Although there are problems to be solved in the processing and operation of the chemical treatment products of livestock carcasses, the chemical treatment method of livestock carcasses can be suggested as an alternative to the current domestic burial-centered livestock carcass treatment method, preventing environmental pollution, and contributing to public health.

브루셀라병 감염소 사체처리 방법별 절차 및 소요비용 비교: 매몰, 재활용, 소각 (Comparison of process and cost of disposal methods for brucellosis infected bovine carcasses: burial, recycling, and incineration)

  • 윤하정;이지영;유치호;김종혁;문운경;박지용;남건욱;서정향;이해춘;김태종;이상진
    • 대한수의학회지
    • /
    • 제49권2호
    • /
    • pp.141-147
    • /
    • 2009
  • In Korea, burial is the most common method of disposing animal carcasses culled due to brucellosis infection. However, burial has many disadvantages such as shortage of appropriate burial sites, possibile pollution of ground water supply, and negative view of the public. In this study, we have reviewed 3 legal methods for disposing bovine carcasses, which are burial, incineration, and rendering. We also described the overall process, advantages and disadvantages, and required costs for each method. About 75% of bovine brucellosis outbreak farms had less than 3 reactors, and in our study, rendering required the least amount of cost for farms with a small number of reactors (1-3 heads). Our findings suggest that the use of rendering should be encouraged for farms with bovine brucellosis and other methods considered only if rendering is inappropriate.

Comparison of bacterial communities in leachate from decomposing bovine carcasses

  • Yang, Seung Hak;Ahn, Hee Kwon;Kim, Bong Soo;Chang, Sun Sik;Chung, Ki Yong;Lee, Eun Mi;Ki, Kwang Seok;Kwon, Eung Gi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1660-1666
    • /
    • 2017
  • Objective: Burial is associated with environmental effects such as the contamination of ground or surface water with biological materials generated during the decomposition process. Therefore, bacterial communities in leachates originating from the decomposing bovine carcasses were investigated. Methods: To understand the process of bovine (Hanwoo) carcass decomposition, we simulated burial using a lab-scale reactor with a volume of $5.15m^3$. Leachate samples from 3 carcasses were collected using a peristaltic pump once a month for a period of 5 months, and bacterial communities in samples were identified by pyrosequencing of the 16S rRNA gene. Results: We obtained a total of 110,442 reads from the triplicate samples of various sampling time points (total of 15 samples), and found that the phylum Firmicutes was dominant at most sampling times. Differences in the bacterial communities at the various time points were observed among the triplicate samples. The bacterial communities sampled at 4 months showed the most different compositions. The genera Pseudomonas and Psychrobacter in the phylum Proteobacteria were dominant in all of the samples obtained after 3 months. Bacillaceae, Clostridium, and Clostridiales were found to be predominant after 4 months in the leachate from one carcass, whereas Planococcaceae was found to be a dominant in samples obtained at the first and second months from the other two carcasses. The results showed that potentially pathogenic microbes such as Clostridium derived from bovine leachate could dominate the soil environment of a burial site. Conclusion: Our results indicated that the composition of bacterial communities in leachates of a decomposing bovine shifted continuously during the experimental period, with significant changes detected after 4 months of burial.