• Title/Summary/Keyword: Carcass Traits and Meat Quality

Search Result 270, Processing Time 0.026 seconds

Association of SNP Marker in the Leptin Gene with Carcass and Meat Quality Traits in Korean Cattle

  • Shin, S.C.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Leptin is the hormone product of the obese gene and is synthesized and secreted predominantly by white adipocytes and relates to the feedback system that regulates long-term body fat weight and composition. Therefore, the leptin gene could be an excellent candidate gene controlling fat deposition, carcass traits and meat quality in beef cattle. The objective of this study was to evaluate the association of 3 SNPs (A1127T and C1180T in exon 2 and C3100T in exon 3) in the bovine leptin gene with carcass and meat quality traits in Korean cattle. The C1180T SNP was associated with backfat thickness (BF) and marbling score (MS) (p<0.05). Animals with the genotype CC had higher BF than animals with TT genotype and higher MS compared with CT and TT genotypes. No significant associations were observed between the C3100T SNP and any carcass and meat quality traits analyzed. The effect of the A1127T SNP was not analyzed because the TT genotype was not detected and the AT genotype showed only 1.0% frequency. These results suggest that the C1180T SNP of the leptin gene may be useful as a genetic marker for carcass and meat quality traits in Korean cattle.

Association between Microsatellite DNA Marker of Leptin Gene and Carcass Traits in Korean Cattle

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.25 no.1
    • /
    • pp.26-31
    • /
    • 2005
  • Leptin, the product of the obesity (ob) gene, is synthesized in adipocytes or fat cells and has been implicated in the regulation of food intake, energy balance and body composition in mammals. Therefore, the leptin gene could be a candidate gene controlling fat deposition, meat quality and carcass traits in cattle. In this study the microsatellite genotypes for leptin gene were determined and their effects on carcass traits and meat quality were estimated in Korean cattle. Six different microsatellite alleles within leptin gene were identified and gene frequencies of 173, 177, 184, 186, 190 and 192 bp alleles were 0.012, 0.308, 0.067, 0.260, 0.342 and 0.016, respectively. The microsatellite marker of the leptin gene showed a significant association with the carcass percentage (CP) and marbling score (MS). Animals with genotypes 192/192 and 177/184 had higher CP than animals with other genotypes. Animals with genotypes 184/192 and 177/184 had higher MS compared with animals with other genotypes. Thus, the results suggest that the 177, 184 and 192 bp alleles may be associated with increased carcass percentage and intramuscular fat levels. No associations were found between the microsatellite genotypes of the leptin gene and other carcass traits such as carcass weight (CW), backfat thickness (BF) and M. longissimus dorsi area (LDA). In conclusion, the microsatellite markers of the leptin gene may be useful for marker-assisted selection of carcass traits and meat quality in Korean cattle.

Genetic Parameters of Reproductive and Meat Quality Traits in Korean Berkshire Pigs

  • Lee, Joon-Ho;Song, Ki-Duk;Lee, Hak-Kyo;Cho, Kwang-Hyun;Park, Hwa-Chun;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1388-1393
    • /
    • 2015
  • Genetic parameters of Berkshire pigs for reproduction, carcass and meat quality traits were estimated using the records from a breeding farm in Korea. For reproduction traits, 2,457 records of the total number of piglets born (TNB) and the number of piglets born alive (NBA) from 781 sows and 53 sires were used. For two carcass traits which are carcass weight (CW) and backfat thickness (BF) and for 10 meat quality traits which are pH value after 45 minutes (pH45m), pH value after 24 hours (pH24h), lightness in meat color (LMC), redness in meat color (RMC), yellowness in meat color (YMC), moisture holding capacity (MHC), drip loss (DL), cooking loss (CL), fat content (FC), and shear force value (SH), 1,942 pig records were used to estimate genetic parameters. The genetic parameters for each trait were estimated using VCE program with animal model. Heritability estimates for reproduction traits TNB and NBA were 0.07 and 0.06, respectively, for carcass traits CW and BF were 0.37 and 0.57, respectively and for meat traits pH45m, pH24h, LMC, RMC, YMC, MHC, DL, CL, FC, and SH were 0.48, 0.15, 0.19, 0.36, 0.28, 0.21, 0.33, 0.45, 0.43, and 0.39, respectively. The estimate for genetic correlation coefficient between CW and BF was 0.27. The Genetic correlation between pH24h and meat color traits were in the range of -0.51 to -0.33 and between pH24h and DL and SH were -0.41 and -0.32, respectively. The estimates for genetic correlation coefficients between reproductive and meat quality traits were very low or zero. However, the estimates for genetic correlation coefficients between reproductive traits and drip and cooking loss were in the range of 0.12 to 0.17 and -0.14 to -0.12, respectively. As the estimated heritability of meat quality traits showed medium to high heritability, these traits may be applicable for the genetic improvement by continuous measurement. However, since some of the meat quality traits showed negative genetic correlations with carcass traits, an appropriate breeding scheme is required that carefully considers the complexity of genetic parameters and applicability of data.

Feeding regimens affecting carcass and quality attributes of sheep and goat meat - A comprehensive review

  • Yafeng Huang;Lumeng Liu;Mengyu Zhao;Xiaoan Zhang;Jiahong Chen;Zijun Zhang;Xiao Cheng;Chunhuan Ren
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1314-1326
    • /
    • 2023
  • Sheep and goats can efficiently convert low quality forage into high-quality meat which contains specific nutrients and quality traits. Carcass traits and quality attributes of sheep and goat meat depend upon several factors and one of most effective strategies amongst these is feeding regimens. In this review, the major aspects of feeding regimens affecting growth rate, carcass traits and quality attributes of sheep and goat meat are thoroughly discussed, with a particular focus on physical-chemical composition, flavor profile, and fatty acid (FA) profile. Grazing lambs and kids receiving concentrate or under stall-feeding systems had greater average daily gain and carcass yield compared with animals reared on pasture only. However, growth rate was higher in lambs/kids grazing on pastures of improved quality. Moreover, the meat of grazing lambs receiving concentrate had more intense flavor, intramuscular fat (IMF) content, and unhealthy FA composition, but comparable color, tenderness, juiciness, and protein content compared to that of lambs grazed on grass only. In contrast, meat of concentrate-fed lambs had more intense color, greater tenderness and juiciness, IMF and protein contents, and lower flavor linked to meat. Additionally, the meat of kids grazed on concentrate supplementation had higher color coordinates, tenderness, IMF content and unhealthy FA composition, whereas juiciness and flavor protein content were similar. In contrast, kids with concentrate supplementation had superior color coordinates, juiciness, IMF content and unhealthy FA composition, but lower tenderness and flavor intensity compared to pasture-grazed kids. Thus, indoor-finished or supplemented grazing sheep/goats had higher growth rate and carcass quality, higher IMF content and unhealthy FA composition compared to animals grazed on grass only. Finally, supplementation with concentrate increased flavor intensity in lamb meat, and improved color and tenderness in kid meat, whereas indoor-fed sheep/goats had improved color and juiciness as well as reduced flavor compared to pasture-grazed animals.

Comparison of Carcass and Meat Quality Traits among Three Rabbit Breeds

  • Wang, Jie;Su, Yuan;Elzo, Mauricio A.;Jia, Xianbo;Chen, Shiyi;Lai, Songjia
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.84-89
    • /
    • 2016
  • The objective of this study was to compare carcass composition and meat quality traits in the longissimus dorsi and biceps femoris muscles in the Hyla, Champagne and Tianfu Black rabbit breeds. Tianfu Black rabbits had the heaviest head, skin, thoracic viscera and commercial carcass percentage (p<0.05). In addition, Tianfu Black had the highest pH0 h value, followed by the Champagne and Hyla breeds (p<0.01) in the longissimus dorsi and biceps femoris muscles. Tianfu Black had a higher a* (0 h and 24 h) than the other two breeds in both longissimus dorsi and biceps femoris muscles (p<0.05). The Hyla, Champagne, and Tianfu Black breeds showed a similar pattern of differences for meat quality traits (pH, L*, a* and b*) measured in fresh meat (0 h) and meat stored for 24 h. Hyla had the highest IMF values of the three breeds (p<0.01). The lower intramuscular fat of Tianfu Black and Champagne rabbits gives them an advantage over Hyla rabbits among most consumers seeking lean rabbit meat.

Associations between gene polymorphisms and selected meat traits in cattle - A review

  • Zalewska, Magdalena;Puppel, Kamila;Sakowski, Tomasz
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1425-1438
    • /
    • 2021
  • Maintaining a high level of beef consumption requires paying attention not only to quantitative traits but also to the quality and dietary properties of meat. Growing consumer demands do not leave producers many options for how animals are selected for breeding and animal keeping. Meat and carcass fatness quality traits, which are influenced by multiple genes, are economically important in beef cattle breeding programs. The recent availability of genome sequencing methods and many previously identified molecular markers offer new opportunities for animal breeding, including the use of molecular information in selection programs. Many gene polymorphisms have thus far been analyzed and evaluated as potential candidates for molecular markers of meat quality traits. Knowledge of these markers can be further applied to breeding programs through marker-assisted selection. In this literature review, we discuss the most promising and well-described candidates and their associations with selected beef production traits.

Objective Meat Quality from Quality Grade and Backfat Thickness of Hanwoo Steers

  • Zhen Song;Inho Hwang
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.531-539
    • /
    • 2023
  • The objective of this study was to determine the effects of quality grade (QG), and back-fat thickness on the carcass traits and meat quality properties of Hanwoo steers. Fifty carcasses were sorted into two QG (QG 1+ and 1) and three back-fat thickness (<10 mm, 10 to 19 mm and ≥19 mm) groups. After investigating the carcass traits (rib eye, back-fat thickness, weight, color, yield index, maturity, marbling score, and texture), the longissimus lumborum muscles from the carcass groups were collected and analyzed for meat quality (pH, color, cooking loss, and moisture), texture profiles [Warner-Bratzler shear force (WBSF), and tensile tests], and fatty acid. Results showed that marbling score (p<0.001), moisture (p<0.05) and tensile tests values (p<0.05) had a significant differences between QG1+ and QG1. No differences in pH, color traits, cooking loss and WBSF values occurred between the QG groups. Regarding the back-fat thickness effect, we observed that the carcass weight, yield index (p<0.001), yield grade (p<0.001) and marbling score (p<0.05) had a significant differences among the back-fat thickness groups. Regarding the meat quality, moisture content and WBSF values (p<0.01) among the back-fat thickness groups. The back-fat thickness did not affect the pH, color, cooking loss and tensile tests. The QG and back-fat thickness did not affect the fatty acids contents (p>0.05). It may be concluded that the carcass traits and meat quality were significantly affected the QG and back-fat thickness.

Effects of environmental enrichment on growth performance, carcass traits, meat quality, and hair follicle development of Rex rabbits

  • Feng, Yang;Shi, Hao;Gun, Shuangbao
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1544-1551
    • /
    • 2021
  • Objective: The purpose of this study was to investigate growth performance, carcass traits, meat quality and hair follicle development of growing Rex rabbits as affected by different environmental enrichment materials. Methods: A total of one hundred and twenty Rex rabbits were randomly assigned to four groups; reared in conventional cages (not enriched) and in enriched cages with either willow stick (WS), rubber duck, or a can containing beans (CB), for 44 days. Results: The average daily gain of the CB group was the highest and had a significant difference from that of the other groups (p<0.05). The spleen and cecum weight of the CB group was greater than those of the WS and control groups (p<0.05). The redness (Commission Internationale de l'Eclairage a*) of the meat sample of the control group was lower than those of the enriched cage groups (p<0.05). Moreover, the hue value of the CB group was significantly lower than that of the other groups (p<0.05). The tenderest meat belonged to the CB group. In addition, more secondary (p<0.05) and primary follicles were found in the CB group than in the control group. Conclusion: Environmental enrichment increased the average daily gain and improved some carcass traits, meat quality, and hair follicle density. Among the three environmental enrichment materials, CB could be recommended for rabbit husbandry.

Association of Bovine CSRP3 and ACOX1 Genes with Carcass and Meat Quality Traits (소의 도체, 육질형질과 CSRP3, ACOX1 유전자들과의 상관관계)

  • Lee, Jong-Kwan;Cho, Yong-Min;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.231-238
    • /
    • 2010
  • There is no investigation has yet been conducted for ACOX1 and CSRP3 gene polymorphisms in Korean cattle (Hanwoo), and their associations with carcass and meat quality traits. In this study, SNPs in ACOX1 and CSRP3 genes were identified and their associations with carcass and meat quality traits were investigated in 227 Hanwoo animals. Two SNPs (g.224G> A and g.19491G>A) in ACOX1 gene and one SNP (g.14859C>T) in CSRP3 gene were identified in Hanwoo and sequence analysis indicated that these SNPs were located in the coding regions. The allele frequencies of ACOX1 g.224G>A and g.19491G>A SNPs were 0.57, 0.43, and 0.56 and 0.44, respectively, For CSRP3 g.14859C>T polymorphism, the C and T allele frequencies were 0.64 and 0.36, respectively. The Hanwoo cattle were used to detect PCR-RFLP patterns for estimating the allele frequencies. Single marker association analyses were performed between genotype of each SNP, and carcass and meat quality association traits to evaluate the relationships in Hanwoo. The g.224G>A SNP genotypes of ACOX1 gene, which was significantly associated with meat quantity grade at slaughter (P<0.03) and backfat thickness tended to be greater (P=0.06) in Hanwoo. The previously identified g.14859C>T SNP was used in this study and the obtained genotype and allele frequencies are almost similar with the previous results reported by Bhuiyan et al. (2007). However, no significant association was found between g.19491G>A SNP in the ACOX1 and g.14859C>T SNP genotypes of CSRP3 gene and considered carcass and meat quality traits. In conclusion, the information on the identified SNPs in CSRP3 and ACOX1 genes could be useful for further association study and haplotype analysis for the development of carcass and meat quality traits in Hanwoo.

Association Analysis between SNP Marker in Neuopeptide Y (NPY) Gene and Carcass and Meat Quality Traits in Korean Cattle

  • Chung, Eui-Ryong;Shin, Sung-Chul;Heo, Jae-Pil
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.537-542
    • /
    • 2011
  • Biological or physiological genes that regulate metabolism and energy partitioning have the potential to influence economically important traits such as carcass and meat quality traits in beef cattle. The neuropeptide Y (NPY) functions as a central appetite stimulator and plays a major role in feed intake and energy-balance control. Therefore, the NPY gene is an excellent biological and physiological candidate gene for body weight, feeding, fatness or growth related traits in beef cattle. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the NPY gene and to evaluate the association of NPY SNP markers with carcass and meat quality traits in Korean cattle. The genomic region (711 bp) including intron 2 of NPY gene was amplified and sequenced, and five SNPs, g.4389 Del(C), g.4371Del(C), g.4271T>C, g.1899A>G and g.1517A>C, were identified. The PCR-RFLP method was then developed to genotype the individuals examined. The g.4271T>C SNP was significantly associated with M. Longissimus dori area (LDA) value (p<0.027). Animals with the TT ($78.144{\pm}0.950\;cm^2$) genotype had higher LDA than those with the CC ($72.266{\pm}2.039\;cm^2$), and animals with TC genotype showed intermediate value. This SNP genotype also showed a highly significant additive genetic effect for the LDA (p<0.01). No significant associations, however, was detected between any of the SNP genotype and other carcass traits measured in this study. In conclusion, SNP genotype of the NPY gene may be used as DNA markers to select animals that have a higher meat yield.