• Title/Summary/Keyword: Carburizing hours

Search Result 7, Processing Time 0.022 seconds

A Study on Wear and Corrosion Properties of Plasma Carburized Austenitic Stainless Steel (플라즈마 침탄된 오스테나이트계 스데인리스강의 마모 및 부식 특성에 관한 연구)

  • Shin, Dong-Myung;Lee, Chang-Youl;Lee. Kyung-Sub
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.776-783
    • /
    • 2002
  • Austenitic stainless steel (STS304) has been carburized using glow discharge plasma and its microstructure, wear resistance and corrosion property have been investigated. A repeat boost-diffuse carburizing was used as an effective plasma carburizing method. The effective case depth of the plasma carburized specimens was increased with the carbon concentration at the surface area. The specimens prepared by 3 hours plasma carburizing under $600^{\circ}C$ did not have the standard hardness for the effective case depth, but the specimen prepared by 11 hours plasma carburizing at $500^{\circ}C$ had nearly the same hardness with the specimen plasma carburized for 3 hours at $800^{\circ}C$. The wear resistance increased with temperature but the corrosion properties of the specimens prepared over $600^{\circ}C$ decreased rapidly due to the grain boundary sensitization. However, the specimen plasma carburized for 11 hours at $500^{\circ}C$ had nearly the same wear resistance with the specimen plasma carburized for 3 hours at $800^{\circ}C$ without deterioration of corrosion property. This could be resulted from the fact that the microstructure of the specimen plasma carburized for 11 hours at $500^{\circ}C$ was composed of martensite and austenite, because a partial martensite transformation was occurred only in the specimen plasma carburized for 11 hours at 50$0^{\circ}C$.

A Study on the Carburizing Treatment of SCM415 Steel Spur Gear (SCM415 스퍼기어의 침탄처리에 관한 연구)

  • Ahn, Min-Ju;Ahn, In-Hyo;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • The main objective of this paper is obtaining the optimal carburizing hours which impacts geometric tolerances, OPD(Over Pin Diameter), runout, hardness and fatigure strength of SCM415 spur gear. In order to observe the deformation of the gear, the circularity, squareness, OPD(Over Pin Diameter) and runout were measured at 3hour, 4hour and 5hour respectively. As the result, the 3hour situation is the best, which very similar with the 4hour one. Afterwards, with the purpose of getting the result of gear hardness, the surface hardness, maximum hardness and interior hardness were measured. The result is 5h situation is the best, and it's similar with 4hour one. At last, the fatigue tests have been done which receive the result that the 4h situation showed 9~12% fatigue strength improvement compared with the 3h and 5h ones. To sum up the results, the 4hour situation shows the best performance in accuracy, hardness and fatigue strength.

Effects of the Gas Composition on Internal Oxidation Characteristics of Low Carbon Alloy Steel during Carburizing in Nitrogen-Propane-Air Atmospheres (질소-프로판-공기분위기에서 저탄소 합금강의 침탄시 내부산화 특성에 미치는 가스조성의 영향)

  • Roh, Y.S.;Kim, S.M.;Kim, Y.H.;Kim, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.53-60
    • /
    • 1991
  • This study has been performed to investigate into the internal oxidation characteristics of low carbon steel with respect to the added amount of air in nitrogen-propane atmosphere after gas carburizing for various times at $930^{\circ}C$. The results obtained from the experiment are as follows ; (1) Optical micrographs have shown that the internal oxidation is unlikely to occur in the gas atmosphere without air and that oxidized zone in the outer surface layer is formed in the gas atmosphere with air revealing that the depth of oxidized zone increases with increasing the added amount of air. (2) The formation of internally oxidized zone in the outer surface layer has been found to be inhibited as Ni content increases, i. e, the amount of alloying element increases. (3) The depth of oxidation has been measured to increase with almost parabolically gas carburizing time of up to 6 hours.

  • PDF

The Effects of Gas Compositions During Post Nitriding on the AISI 316L Stainless Steel after Plasma Carburizing

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.269-274
    • /
    • 2015
  • In this experiment, post-nitriding treatment was performed at $400^{\circ}C$ on AISI 316 stainless steel which was plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% $N_2$, 50% $N_2$ and 75% $N_2$) for 4 hours. Additionally, during post nitriding Ar gas was used with $H_2$ and $N_2$ to observe the improvement of surface properties. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduced the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% $N_2$ gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment degraded the corrosion resistance of the sample compared with the carburized sample.

Effect of Ni Content and Atmosphere Gas Pressure on the Carburizability Low-Carbon Alloy Steels During Fluidized-bed Carburizing (유동상 침탄시 저탄소 합금강의 침탄능에 미치는 Ni 함량 및 분위기 가스압력의 영향)

  • Roh, Y.S.;Kim, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.3
    • /
    • pp.5-12
    • /
    • 1990
  • This study has been conducted to establish the carburizing characteristics of low carbon alloy steels with varying amount of Ni element gas-carburized for 2 hours at $930^{\circ}C$ in an atmosphere of 94% $N_2$-6% $C_3H_8$ gas mixture with some changes in gas pressure passing through the diffusion plate in the fluidized-bed furnace. The results obtained from the experiment are as follows : (1) Optical micrograph has shown that the carburized layer consists of retained austenite and plate martensite and that retained austenite increases as the pressure of gas mixture passing through the diffusion plate as well as Ni content increase. (2) Chemical analysis has shown that carbon potential increases and carburizability is also improved due to a less degree of fluidization as the pressures of gas mixtures passing through the diffusion plate increase, resulting in, however, a severe formation of soot, and the gas pressure is necessarily regulated. (3) It has been revealed that carbon concentration hardness values at a given distance measured from the surface within the carburized case. Increase with increasing the pressure of gas mixtures passing through the diffusion plate and decrease with increasing Ni content. (4) The effective case depth has been shown to almost linearly increase as the pressure of gas mixtures passing through the diffusion plate is increased and to decrease with increasing Ni content.

  • PDF

The effects of post nitriding on the AISI 316 stainless steel after Plasma carburizing at various gas compositions (저온 플라즈마침탄처리된 316L 스테인레스 스틸의 플라즈마 후질화 처리시 표면특성에 미치는 가스조성의 영향)

  • Lee, In-Seop;Debnath, Sanket
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.177-178
    • /
    • 2012
  • In this experiment, post-nitriding treatment has been performed at $400^{\circ}C$ on AISI 316 stainless steel which is plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% N2, 50% N2 and 75% N2) for 4 hours. Additionally, during post nitriding Ar gas was used with H2 and N2 to observe the improvement of treatment. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduces the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% N2 gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment were degraded the corrosion resistance of the sample compared with the carburized sample.

  • PDF

Analysis of the effects of operating point of tractor engine on fatigue life of PTO gear using simulation

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.441-449
    • /
    • 2016
  • Agricultural tractors are designed using the empirical method due to the difficulty of measuring precise load cycles under various working conditions and soil types. Especially, directly drives various tractor implements, the power take off (PTO) gear. Therefore, alternative design methods using gear design software are needed for the optimal design of tractors. The objective of this study is to simulate fatigue life of the PTO gear according to the operating point of the tractor engine. The PTO gear was made with SCr415 alloy steel with carburizing and quenching treatments. The fatigue life of the PTO gear was simulated by using bending and contact stress according to the torque of the load levels. The PTO gear simulation was conducted by the KISSsoft commercial software for gear analysis. Bending and contact stress were calculated by the ISO 6336:2006 Method A and B. The simulation of fatigue life was calculated by the Miner's cumulative damage law. The total fatigue life of tractors can be estimated to 3,420 hours; thus, 3,420 hours of fatigue life were used in the simulation of the PTO gear of tractors. The main simulation results showed that the maximum fatigue life of the PTO gear was infinite fatigue life at maximum engine power. Minimum fatigue life of the PTO gear was 19.61 hours at 70% of the maximum engine power. Fatigue life of the PTO gear changed according to load of tractor. Therefore, tractor work data is needed for optimal design of the PTO gear.