• Title/Summary/Keyword: Carburization resistance coefficient

Search Result 1, Processing Time 0.014 seconds

Effect of Cementite Precipitation on Carburizing Behavior of Vacuum Carburized AISI 4115 Steel (진공침탄에 의한 AISI 4115강의 침탄 거동에 미치는 세멘타이트 석출의 영향)

  • Gi-Hoon Kwon;Hyunjun Park;Yoon-Ho Son;Young-Kook Lee;Kyoungil Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.402-411
    • /
    • 2023
  • In order to examine the effect of cementite precipitated on the steel surface on the carburizing rate, the carburizing process was carried out at various boost times to measure the mass gain and carbon flux, phase analysis and carbon concentration analysis were performed on the surface of the carburized specimen. In the case of the only boost type, the longer the boost time, the more the mass gain by the diffused carbon follows the parabolic law and tends to increase. In particular, as the boost time increased, the depth of cementite precipitation and the average size of cementite on the steel surface increased. At a boost time of 7 min, the fraction of cementite precipitated on the surface is 7.32 vol.%, and the carburizing rate of carbon into the surface (surface-carbon flux) is about 17.4% compared to the calculated value because the area of the chemical (catalyst) where the carburization reaction takes place is reduced. The measured carbon concentration profile of the carburized specimen tended to be generally lower than the carbon concentration calculated by the model without considering precipitated cementite. On the other hand, in the pulse type, the mass gain by the diffused carbon increased according to the boost time following a linear law. At a boost time of 7 min, the fraction of cementite precipitated on the surface was 3.62 vol.%, and the surface-carbon flux decreased by about 4.1% compared to the calculated value. As a result, a model for predicting the actual carbon flux was presented by applying the carburization resistace coefficient derived from the surface cementite fraction as a variable.