• Title/Summary/Keyword: Carburetor

Search Result 30, Processing Time 0.025 seconds

Effects of Inlet-Manifold Water Addition on the Performance of Kerosene Engines (석유(石油)엔진의 흡기관내(吸氣管內)의 물 부가(附加)가 엔진성능(性能)에 미치는 영향(影響))

  • Yi, Chun Woo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1983
  • This study was carried out to investigate the possibility of improving the performance of a kerosene engine with water addition. The engine used in this study was a single-cylinder, four-cycle kerosene engine with the compression ratio of 4.5. Water could be successfully added into the inlet manifold by an extra carburetor for the volumetric ratios of 5, 10, 20, and 30 percents. Variable speed tests at wide-open throttle were performed for five speed levels in the range of 1,000 to 2,200rpm for each fuel type. Volumetric efficiency and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heats of combustion of kerosene was calculated. To examine variation in fuel consumption, CO concentration, and cooling water temperature, part load tests were also performed. The results obtained are summarized as follow. (1) Brake torque increased almost in proportion to volumetric efficiency. But the ratio of increase in torque was greater than that of volumetric efficiency. Mean torque over the speed range of 1,000 to 2,200rpm increased 1, 3, 7, and 2 percents for 5, 10, 20, and 30 percents water addition, respectively. The increase in brake torque with water addition was greater at lower speeds. (2) Mean brake specific fuel consumption over the speed range of 1,000 to 2,200rpm decreased 1, 2, 3, and 3 percents for 5, 10, 20, and 30 percents water addition, respectively. (3) Mean temperature of cooling water over the speed range of 1,000 to 2,200rpm decreased 2, 4, 8, and 12 percents for 5, 10, 20, and 30 percents water addition, respectively. (4) The effects of decreasing CO concentration in the exhaust emissions with water addition were significant. At the speed range of 1,000 to 2,200rpm, CO concentration in the exhaust emissions decreased 2, 10, 23, percents for 5, 10, and 20 percents water addition, respectively. (5) Deposits were not discovered in the combustion chamber during the experiment. However, a little rust was formed in the water-supply carburetor.

  • PDF

Output Characteristics Using Indirect Measurement of Air Flow in a Motorcycle Engine (흡입공기량 간접계측방식의 전자제어화 Motorcycle 엔진 출력 특성)

  • Jung Taegyun;Chae Jaeou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.87-95
    • /
    • 2005
  • Most of the motorcycle engines have used carburetors in the fuel system, because of its simple structure and reliability but the fuel economy and the emissions of those engines are bad when we compared with automobile engines .To meet with the tighten emission regulations and the higher requirements for fuel economy, the application of the carburetor on the motorcycle engines would be limited. Therefore, it is important to develope a ECU control system for motorcycle engines. Since the fuel injection system is expensive, it is necessary to decrease the cost of ECU system for motorcycle engines, but the accuracy of the ECU control system should be increased as high as possible. In this paper, we studied about the AFS characteristics of motorcycle engine controled by indirect method.

Mechanism of a Spray Transport on Intake Manifold Walls (흡기매니폴드내 벽면으로의 연료수송)

  • Lee, G.Y.;Jeon, H.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 1996
  • Study on the mechanism of droplet transport and the droplet eddy diffusivity in the intake manifold of internal conbustion engine with carburetor has been carried out in this paper The theory and experiments were studied and performed respectively, to elucidate the mechanism and to measure typical rates of deposition, on the walls of a straight type intake manifold, of water droplets suspended in a turbulent air streams. Accordingly, the results are that Mechanism of a spray transport to the walls is caused by the fluctuation component of radial velocity. Deposition rate of a spray on the walls is mainly dependent upon air velocity and mean diameter of spray, and Droplet eddy diffusivity in the intake manifold is around $80\sim105cm^2/sec$.

  • PDF

Effects of Perforated Throttle Valve on the Mixture Flow and Secondary Atomization of Fuel Spray (다공스로틀밸브가 혼합기 유동과 연료 분무의 2차 미립화에 미치는 영향)

  • Cho, B.O.;Cho, H.M.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.60-66
    • /
    • 1996
  • Finely atomized fuel droplet and good mixed mixture plays very important in improving combustion efficiency in an spark ignition engine. And combustion efficiency has influence directly on the engine power, fuel consumption rate and pollutant emission. In this study, perforated throttle valve which has relatively low value of PR has been developed and studied for the purpose of improving those aims. As a result of this study, it has been verified that the perforated throttle valve makes droplet more finely, and also proved that has a function of contributing to form good mixed mixture, especially in mixture preparation system of carburetor or SPI type spark ignition engine.

  • PDF

The Effect of Intake Air Temperature on Knock Characteristics in a Spark-Ignition Engine (흡입 공기 온도변화에 따른 스파크 점화기관의 노킹 특성 변화)

  • 정일영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • Spark-ignition engine knock is affected by engine operating conditions such as engine speed, spark timing and intake air temperature. In this study the effect of intake air temperature on knock characteristics was studied experimentally using a 4-cylinder carburetor spark-ignition engine. The cylinder pressure data at 2000rpm were taken for intake air temperature range of $30^{\circ}C$ to $80^{\circ}C$ with $10^{\circ}C$ interval. And 80 consecutive cycles were taken at each experimental condition. As the same spark timing, as the intake air temperature increased by $50^{\circ}C$, the mean knock intensity increased about 20kPa. This effect corresponds to that of spark timing advance of 3 crank angle degrees.

  • PDF

An experimental study on the behavior of fuel flow in intake manifold by the model (모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구)

  • 박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

Exhaust Emission Characteristics of in-use Passenger Cars Equipped with Three-way Catalyst (운행중인 삼원촉매부착 승용차의 오염물질 배출특성)

  • 조강래;김종춘;홍유덕
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.153-162
    • /
    • 1995
  • As exhaust emission standards for new passenger cars amended in 1987 have become more stringent, vehicle manufacturers have employed three-way catalyst in order to meet these requirements. The purpose of this study was to gather informations on new emission control systems in customer use for in-use vehicles from the 1987 through 1992 model years were capable of achieving low exhaust emission levels although high levels do occur due to defects, deterioration or maladjustments with the emission control equipment. The vehicles with closed loop electronic control fuel injection system emitted low exhaust emission, but the carburetor control system equipped vehicles emitted high exhaust emissions and the high mileage vehicles exhibited higher average emissions than low mileage vehicles. It was also found that the useful life of 80, 000km is very important to maintain the low emission levels within customer service period.

  • PDF

Structure & operation of electronic fuel injection (전자제어식 연료분사장치의 구조와 작동)

  • 목희수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.13-23
    • /
    • 1986
  • The power of an international combustion engine depends on its ability to inhale air whether it is naturally aspirated or turbocharged. The use of fuel injection allows engine efficiency to be increased through a more even distribution of the air/fuel ratio throughout the engine's operation range. The theoretical value for complete combustion in an engine is commonly refered to as stoichiometric, which means that we require 14.7 parts of air to 1 part of gasoline. This stoichiometric ratio can be more closely maintained with electronically controlled fuel injection than it can with carburetion. Because of the greater efficiency of the engine using fuel injection, a horse power increase of at least 10% is produced over its carburetor version. In addition, better fuel economy and less exhaust emissions are also obtained.

  • PDF

A study on the pressure variation in the intake and exhaust pipes of four cycle four cylinder S.I. engine (4 사이클 4기통 전기점화기관의 흡배기관내의 압력변동에 관한 연구)

  • 이석재;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-91
    • /
    • 1988
  • The purpose of this study is to investigate the flow through the intake and exhaust system of a spark ignition engine. The flow was assumed to be one-dimensional, compressible and unsteady, and carburetor, muffler, valve and junction are modelled as boundary conditions according to their flow characteristics. In the experiment, four cylinder gasoline engine is used and the pressures in the intake and exhaust pipes and in the cylinder are measured and compared with the results of numerical analysis. In consequence of the comparison, four periods of pressure wave in a cycle are observed in both case of experiment and prediction. In case of exhaust pipe, the results obtained from the experiment are in accord with that from calculation. The results of the intake system show some differences with each other due to the complication in shape, but the periods of both case concur well.

  • PDF

Characteristics Analysis of BLOC Motor with C type Permanent Magnet (C type 영구자석을 갖는 BLDC 모터의 특성 해석)

  • Rhyu, S.H.;Im, T.B.;Chung, J.K.;Ha, K.S.;Lee, S.H.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.50-52
    • /
    • 2001
  • The BLDC(Brushless DC) motor with the permanent magnet has many merits such as high efficiency and efficiency. These characteristics of the BLDC motor makes them one of the most popular motors in the world today. The C type ferrite magnet is many used in BLDC motor for high performance, especilly low price. Many papers have been written on the analysis of the BLDC motor with C type ferrite magnet. But, most of these target models are contained symmetric distribution of permanent magnet. In this paper, investigations are made on different distribution of permanent magnets for a understanding of the effects of unequal permanent magnet location on the unbalanced cogging torque. Motor torque and cogging torque are obtained by using the 2 dimensional finite element method.

  • PDF