• Title/Summary/Keyword: Carboxyl groups

Search Result 237, Processing Time 0.028 seconds

Comparison of Chemicophysics Properties of the Detonation Monocrystalline and Synthetic Polycrystalline Nanodiamond (폭발 단결정과 합성 다결정 나노다이아몬드의 물리화학적 특성 비교)

  • Kang, Soon-Kook;Chung, Myung-Kiu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4689-4695
    • /
    • 2011
  • Nanodiamond is a relatively new nanomaterial with broad prospects for application. In this paper, a variety of methods were used to analyze comprehensively chemicophysics properties of the detonation monocrystalline and synthetic polycrystalline nanodiamond, XRD spectroscopy, EDS, HRTEM, FTIR, Raman spectroscopy, TGA-DTA and BET. The results show that the monocryctalline detonation nanodiamond particles are spherical or elliptical shape of 4nm ~ 6nm grain size and the polycryctalline synthetic nanodiamond particles are angular shape of 80nm ~ 120nm grain size. The surface of the monocrystalline and polycrystalline nanodiamond contain hydroxy, carbonyl, carboxyl, ether-based resin, and other functional groups. The phase transition temperature of the monocrystalline detonation nanodiamond in the $N_2$ is about $650^{\circ}C$.

Separation Between Soil Particles and Magnetic Beads by Magnetic Force (자력을 이용한 토양입자와 마이크로자성체의 분리 연구)

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.76-80
    • /
    • 2005
  • It was evaluated whether magnetic beads able to add the functionality of environment purification can be employed in processing soil pollutants. In this study, the micro scale magnetic beads containing carboxyl groups were mixed with water and the soil $(<0.025{\cal}mm) filtered through a sieve, and then it was agitated before isolating the magnetic substances by the use of outer magnetic force. The factors considered at this step were the ratio of soil to magnetic beads, ratio of soil to water, size of the tube where the reaction occur, and intensity of the magnetic force. From the separation experiment between soil and magnetic beads, it was concluded that the magnetic beads and water quantity have an impact on the degree of separation, yet the size of the tube and magnetic force does not have a considerable effect upon that in this small-scaled experiment. Through this experiment, the reaction conditions were optimized to achieve $90\~100\%$ of separation. Therefore, it was concluded that when the functionalized magnetic beads is introduced to environmental processing, it is able to be adopted to the soil processing as well as the water processing.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase

  • Jeong, Ki-Woong;Lee, Jee-Young;Kang, Dong-Il;Lee, Ju-Un;Hwang, Yong-Sic;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1311-1314
    • /
    • 2008
  • Bacillus halodurans O-methyltransferase (BhOMT) is an S-adenosylmethionine dependent methyltransferase. In our previous study, three dimensional structure of the BhOMT has been determined by comparative homology modeling and automated docking study showed that two hydroxyl groups at 3'- and 4'-position in Bring and structural rigidity of C-ring resulting from the double bond characters between C2 and C3 of flavonoid, were key factors for interaction with BhOMT. In the present study, BhOMT was cloned and expressed. Binding assay was performed on purified BhOMT using fluorescence experiments and binding affinity of luteolin, quercetin, fisetin, and myricetin were measured in the range of $10^7$. Fluorescence quenching experiments indicated that divalent cation plays a critical role on the metal-mediated electrostatic interactions between flavonoid and substrate binding site of BhOMT. Fluorescence study confirmed successfully the data obtained from the docking study and these results imply that hydroxyl group at 7-position of luteolin, quercetin, fisetin, and myricetin forms a stable hydrogen bonding with K211 and carboxyl oxygen of C-ring forms a stable hydrogen bonding with R170. Hydroxyl group at 3'-and 4'-position in the B-ring also has strong $Ca^{2+}$ mediated electrostatic interactions with BhOMT.

The Effect of Acid Treatment on the Adhesion Property of Polyketone with Rubber (폴리케톤과 고무의 접착성에 미치는 산처리의 영향)

  • Choi, Hae Young;Lee, Tae Sang;Lee, Jong;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • Phosphoric acid treatments were conducted to improve the adhesion property of polyketone film to rubber. The effects of phosphoric acid treatments were characterized by using a contact angle analyzer and a XPS (X-ray photoelectron spectroscopy). Morphological changes were observed by using a scanning electron microscope (SEM) and an atomic force microscope (AFM) as the acid treatment condition varied in concentration and time. The contact angle was found to significantly decrease with the acid treatment. According to the XPS, increased wettability was attributed to the inclusion of oxygen containing groups such as hydroxyl, carbonyl and carboxyl by acid treatments. Cracks and pores were produced on the polyketone film surface and thus, roughness increased with the acid treatment. Interfacial adhesion strength between polyketone and natural rubber was largely improved by acid treatment due to the increased wettability and roughness of the polyketone surface. However, the higher level of acid treatment caused the degradation of the polyketone surface, and thus, its interfacial adhesion consequently decreased.

Synthesis and Characterization of Molybdenum (V)-1, 6-Diaminohexane-N, N, N', N'-tetraacetic Acid Derivatives Complexes (몰리브덴 (V) 와 1, 6-Diaminohexane-N, N, N', N'-tetraacetic Acid 계 착물합성과 그 성질)

  • Sang Oh Oh;Sig Young Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 1989
  • A new series of $dioxo-di-{\mu}-oxo-dimolybdate(V)(*image)$, has been prepared by the reaction of pyridinum oxoisothiocyanato-molybdate(V) with 1, 6-diaminohexane-N, N, N', N'-tetraacetic acid derivatives containing amine carboxyl groups. The properties and possible molecular structure of these complexes were discussed by elemental analysis, spectroscopic studies and magnetic susceptibility measurements. The infrared spectra of these complexes show two strong Mo=$O_t$ stretching modes in the $900-965cm^{-1}$, MoO$_2$Mo stretching bands at around 450∼500 and $740-765 cm^{-1}$ to symmetrical and asymmetrical O-bridge stretching, a coordinated $COO^-$ asymmetrical band in the $1600-1635 cm^{-1}$. The complexes synthesized were yellow or orange and diamagnetic.

  • PDF

Synthesis and Characterization of Molybdenum(V)-Iminodiaceticacid Derivatives Complexes (몰리브덴(V)와 이미노디아세틱액시드계 착물 합성과 그 성질)

  • Sang-Oh Oh;Sik-Young Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.520-526
    • /
    • 1987
  • A new series of $dioxo-di-\mu-oxo-dimolybdate(V)$, has been prepared by reaction of pyridinum oxoisothiocyantomolybdate (V) with iminodiacetic acid derivatives containing amine carboxyl groups. The properties and possible molecular structure of these complexes were discussed by elemental analysis, spectroscopic studies and magnetic susceptibility measurements. The infrared spectra of these complexes all show two strong $Mo=O_t$ stretching bands in the 900∼$980cm^{-1}$, $MoO_2Mo$ very prominent strectching bands at around 410~425 and 735~$750cm^{-1}$ to symmetrical and asymmetrical O-bridge stretching, a coordinated $coo^-$ asymmetrical band in the 1585∼$1,640cm^{-1}$. Also, d-d transition of molybdenyl complexes corresponding to $^2B_2{\to}^2B_1$ occured in the 24,800~$28,000cm^{-1}$ region, charge transfer transition corresponding to ligand-to-molybdenum in the 32,500~33,800, 42,000~$47,500cm^{-1}$ region. The complexes synthesized were yellow or orange and diamagnetic.

  • PDF

Purification and Characterization of the Antitumor Antibiotic from Streptomyces sp. YBE-316 (Streptomyces sp. YBE-316이 생산하는 항암성 항생물질의 정제 및 특성)

  • Park, Jae-Hong;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.329-336
    • /
    • 1995
  • For the development of new antitumor antibiotics produced by microorganisms, Streptomyces sp. YBE-316 was isolated from soil. The productivity of the antitumor antibiotic from Streptomyces sp. YBE-316 gradually increased after 60 hours, and was maximum after 100 hours after inoculation in growth medium (2.0% sucrose, 1.0% soybean meal, 0.1% K$_{2}$HPO$_{4}$, pH 7.0) at 30$\circ$C, 150 rpm, 5 NL/min by 30 l jar fermentor. This antitumor antibiotic was present only in mycelium, and stable in pH 5.0-10.0 for 20 minutes at 100$\circ$C. Antitumor and antibiotic activities were maintained at neutral pH, and heat stability was low. This antitumor antibiotic was soluble in methanol and ethanol, and insoluble in water, ethyl acetate, chloroform, and n-hexane. This antitumor antibiotic was sequentially purified by acetone extraction from mycelium, butanol extraction, and silica gel column chromatography. Antitumor activity was low against most tested cell lines, but antibiotic activity was high and low against yeasts and bacteria, respectivelv. The visualization test showed that this antitumor antibiotic had higher hydroxyl, ketone, amino, carboxyl groups, and sugar(s) in its structure. Instrumental analyses showed that this antitumor antibiotic was a pentaene in polyene class antibiotics. In pentaene class antibiotics, this was considered as an eurocidin or capacidin type antibiotics. The molecular weight of this antitumor antibiotic was higher than 683.0 daltons, and this antitumor antibiotic might be glycosylated by other sugar(s), instead of mycosamine or perosamine, an amino sugar.

  • PDF

Structure and Expression of OsUBP6, an Ubiquitin-Specific Protease 6 Homolog in Rice (Oryza sativa L.)

  • Moon, Yea Kyung;Hong, Jong-Pil;Cho, Young-Chan;Yang, Sae-Jun;An, Gynheung;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database (http://signal.salk.edu/cgi-bin/RiceGE) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetra-ubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants.

A Study on the Amino-Carbonyl Reaction (아미노-카르보닐 반응(反應)에 관한 연구)

  • Yang, Ryung;Shin, Dong-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-96
    • /
    • 1980
  • Reaction conditions in the amino-carbonyl reaction, and the effect of amino acids on the reactivity of amino-carbonyl reaction were investigated. Results obtained are as follows : 1. When the pH of the reaction mixture was increased above the isoelectric point of an amino acid, a significant increase in the color intensity was observed. 2. The color intensity increased gradually up to 1 : 1 of the molar ratio of reactants. This result was interpreted to show that sugar and free amino group combined in 1 : 1 ratio. 3. Amino-carbonyl reaction showed a significant time and temperature-dependences. The activation energy at 0.2 M glucose and 0.2 M glycine system was 37.5 Kcal/mole. 4. Among amino acids tested, glycine, lysine and $\beta$-alanine caused a significant increase in the color intensity, but acidic amino acids showed the least color intensity. The latter was interpreted to show that one of carboxyl groups of acidic amino acid has an inhibiting effect on the reactivity of the amino group. 5. The color intensity of sugars tested was in the order of xylose>arabibose>fructose>glucose>maltose>lactose.

  • PDF