• Title/Summary/Keyword: Carbonyl compounds

Search Result 335, Processing Time 0.026 seconds

Reaction of Organic Halogen Compounds with Metals (Part Ⅰ) A Formation of Organometallic Complex in Dimethyl Formamide Solvent (有機할로겐 化合物과 金屬과의 反應 (第1報) 디메칠호름아마이드 溶媒存在下에서의 有機金屬콤프렉스 生成에 關한 硏究)

  • Yon Sun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.216-224
    • /
    • 1963
  • Reaction of organic chlorine containing ester, alcohol, and acids with metallic tin and zinc in dimethyl formamide solvent gave a good yield of organo metallic complex. The same reaction under a mixed U.V. irradiation could not give an appreciable yield of the complex except in the case of an elevated reaction temperature. The solvation effect of dimethyl formamide of the metallic complex formation was markedetly increased as compared to the reaction in toluene and cyclohexane. In case of chlorine containing carboxylic acid, the formation of organo chloro zinc complex of the salt was observed. The reaction of organo zinc complex with a carbonyl precursor gave the addition product together with a dimerized product. Especially the aldehyde species enhanced the formation of zinc complex. The addition reaction was simple and convenient, but the yield was not high.(30-40% for the acid, 73% for the ester, 14.6% for alcohol). The result was discussed on basis of solvent effect and the procedures were described.

  • PDF

Calculation and Application of Partial Charges (부분 전하의 계산과 응용)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.226-230
    • /
    • 2010
  • Calculation of partial charge is important in chemistry. However, because there are many methods developed, it is of considerable interest to know how to calculate and apply properly to address various chemical problems. For basis set, usually double zeta quality is acceptable, and double zeta polarization function would be enough for most cases. To describe electronic state more accurately, Many electron configurations would be necessary to describe highly strained or anionic species. The NPA population introduced new concept about amide bonds, i.e., the planar geometry of nitrogen atom may not come from resonance, but from the lowering of p-orbital energy by electronegative carbonyl carbon atom. The issues for hypervalent atomic charges was also addressed by various charge derivation scheme. When the charge schemes were applied to organolithium compounds, the ionic nature of boding was revealed. This comes from the fact that previous Mulliken partial atomic charges overemphasized the covalent character, wihout much justification. The other partial charge derivation schemes such as NPA(natural population analysis), IPP (Integrated Projected Population) showed that much more ionic picture. ESP potential derived charges are generally believed to be suitable to describe intermolecular interactions, therefore they are used for molecular dynamics simulations and CoMFA (comparative molecular field analysis). The charge derivation schemes using multipole polarization was mainly applied to reproduce experimental infrared spectroscopy. In some reports these schemes are also suitable for intermecular electrostatic interactions. Charges derived from electron density gradient have shown the some bonds are not straight, but actually bent. The proper choice of charge-calculation method along with suitable level of theory and basis set are briefly discussed.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF

Oxidative Stability and Flavor Compounds of Sesame Oils Blended with Vegetable Oils (식물성유를 첨가한 참기름 혼합유의 산화 안정성과 향기 성분)

  • Joo, Kwang-Jee;Kim, Jin-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.984-991
    • /
    • 2002
  • Oxidative stability and flavor of sesame oil blended with canola oil (Ca), corn oil (Co), and soybean oil (Sb) at ratios of 90 : 10, 70 : 30, and 50 : 50 (w/w), respectively, were evaluated. Oxidative stability of sesame oil increased with the addition of vegetable oils (10, 30, and 50% of Ca and Co, and 10% of Sb). Pyrazines, pyrroles, pyridines, and thiazoles, good contributors to the characteristic flavor of sesame oil, were also found in sesame oil blended with vegetable oil. The sensory evaluation showed that no difference was observed between sesame oil and sesame oil blended with 10% of Ca, Co or Sb, which showed higher oxidative stability.

Effects of Different Drying Methods on Fatty Acids, Free Amino Acids, and Browning of Dried Alaska Pollack (명태건조방법에 따른 갈변화 관련 물질의 변화)

  • Choi, Hee-Sun;Kim, Jong-Hwan;Kim, Jae-Cherl
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.9
    • /
    • pp.1182-1187
    • /
    • 2007
  • Changes in composition of fatty acids and free amino acids in three differently dried Alaska pollack (sun dried, naturally cyclic freeze-thaw dried, and 1-year-aged cyclic freeze-thaw dried Alaska pollack (Hwangtae)) were investigated to correlate them with browning reactions in drying and aging Alaska pollack. Major fatty acids of the sun dried Alaska pollack were palmitic acid, oleic acid, and eicosapentaenoic acid (EPA), and those in the Hwangtae were palmitic acid, oleic acid, and gondoic acid. Hwangtae showed the lowest amount of polyunsaturated fatty acids among the three types of dried Alaska pollack. Free amino acids content of sun dried Alaska pollack was higher than that of the cyclic freeze-thaw dried Alaska pollack and Hwangtae. Lesser amount of histidine in Hwangtae (0.02%) than that in the cyclic freeze-thaw dried Alaska pollack (0.087%) may indicate the degradation of histidine due to the browning reaction in aging the cyclic freeze-thaw dried Alaska pollack. Significant changes in compositions of fatty acids and free amino acids among the dried products revealed the browning reaction resulted from carbonyl compounds produced by decomposition of lipid hydroperoxides and free amino acids. Aging the cyclic freeze-thaw dried Alaska pollack for a year contributed to the development of browning.

Synthesis of Alkylidyne Complexes of Br$(CO)_2(tmeda)M{\equiv}CC_{6}H_{4}Me$ (M = Cr, Mo, W). Crystal Structure of Br$(CO)_2(tmeda)M{\equiv}CC_{6}H_{4}Me$

  • Park, Joon T.;Cho, Jeong-Ju;Suh, Il-Hwan;Lee, Jin-Ho;Lim, Sung-Su;Ryu, Bo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.266-271
    • /
    • 1993
  • The reaction of $(CO_5$)M=C(OMe)Tol (M=Cr, Mo, W and $Tol=p-C_6H_4Me)$ and $BBr_3$ followed by treatment with tetramethylethylenediamine (TMEDA) yields a mixture of two diastereomers, trans, $cis-Br(CO)_2(tmeda)M{\equiv}$CTol [M=Cr(1a), Mo(2a), W(3a)] and cis, $trans-Br(CO)_2(tmeda)M{\equiv}$CTol [M=Cr(1b), Mo(2b), W(3b)], respectively. These compounds have been isolated as crystalline solids and characterized by spectroscopic (infrared, mass, $^1H$ and $^{13}C-NMR)$ data. The trans, cis-Br(CO)2(tmeda)Cr${\equiv}$CTol (1a), has been examine via a single crystal X-ray diffraction study : $BrCrO_2N_2C_{16}H_{23}$, Mr=407.27, triclinic, $P{\bar{1}},\;a=12.792(2),\;b=13.400(5),\;c= 11.645(4)\;{\AA},\;{\alpha}=101.26(2)^{\circ},\;{\beta}=103.04(2)^{\circ},\;{\gamma}=91.88(2)^{\circ},\;{\nu}=1907(1){\AA}^3,\;Z=2,\;{\rho}(calcd)=1.418\;gcm^{-3},\;{\lambda}(MoK{\alpha})=0.71069\;{\AA},\;{\mu}=26.25 cm^{-1},\;F(000)=831.97,\;T=295K,\;R=0.0977$ for 1332 significant reflections $[F_0>5{\sigma}(F_0)]$. There are two essentially equivalent molecules in the crystallographic asymmetric unit. Each molecule is octahedral with the bromide ligand trans to the alkylidyne carbon, the two cis-carbonyl ligands, and the bidentate TMEDA ligand.

Development of Ruthenium/TEMPO/Nitrate Catalyst System for Efficient Oxidation of Isosorbide (아이소소바이드의 효과적 산화반응을 위한 루테늄/템포/나이트레이트 촉매 시스템 개발)

  • Irshad, Mobina;Yu, Jung-Ah;Oh, Youngtak;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.103-108
    • /
    • 2022
  • This research work reports the development of a Ruthenium/2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/nitrate catalyst system for the highly selective transformation of isosorbide (1,4:3,6-dianhydro-D-glucitol) to isosorbide-diketone (2,6-dioxabicyclo (3,3,0)octan-4,8-one). Isosorbide is a critical platform molecule for future manufacturing processes. TEMPO has been utilized to convert alcohols to carbonyl compounds for a long time. The optimal chemical reaction condition was found to be when using isosorbide (0.5 mmol) with supported Ru (10 mol%), TEMPO (5 mol%), and sodium nitrate (0.03 mmol) in the presence of acetic acid (3 ml) as a solvent at 50 ℃ and 1 atm oxygen pressure. This catalyst system demonstrated good selectivity (> 97%) and yield (87%) with respect to the desired product, in addition to a putative catalytic double oxidation mechanism.

Studies on the Processing of Low Salt Fermented Sea Foods 9. Processing Conditions of Low Salt Fermented Small Shrimp and Its Flavor Components (저식염 수산발효식품의 가공에 관한 연구 9. 저식염 새우젓의 제조 및 풍미성분)

  • LEE Eung-Ho;AHN Chang-Bum;OH Kwang-Soo;LEE Tae-Hun;CHA Yong-Jun;LEE Keun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.5
    • /
    • pp.459-468
    • /
    • 1986
  • This study was attempted to process low-sodium salt fermented small shrimp as substitutes for traditional high-sodium salt fermented one which has widely been favored and consumed in Korea. Low-salt fermented small shrimp was prepared with $4\%$ sodium chloride and $4\%$ potassium chloride, and various additives such as $0.5\%$ lactic acid, $6\%$ sorbitol and $4\%$ ethylalcohol extract of red pepper as preservatives and flavor enhancers. And the changes of taste compounds, volatile compounds and fatty acid composition in low-salt fermented small shrimp were analyzed and compared with those of conventional $20\%$ sodium salt fermented one during the fermentation of 120 days at $25{\pm}3^{\circ}C$. The most favorable taste for fermented small shrimp were reached at 60 days of fermentation. Judging from sensory evaluation, little difference of taste was detected between the low-salt fermented small shrimp and high-sodium salt fermented one. The principal taste compounds in fermented small shrimp were free amino acids, and betaine and nucleotides and their related compounds played an assistant role. The major amino acids in fermented small shrimp were glutamic acid, leucine, proline, glycine, lysine and aspartic acid. The major fatty acids in fermented small shrimp samples were 16:0, 20:5, 22:6, 16:1 and 18:1, and unsaturated fatty acids decreased slightly while saturated fatty acids increased during fermentation. At 60 days of fermentation 8 kinds of volatile fatty acids (acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, valeric acid, isocarproic acid, carproic acid), 6 kinds of carbonyl compounds (ethanal, propanal, 2-methylpropanal, 3-methylbutanal, pentanal, 2-methylpentanal), and 3 kinds of volatile amines (methylamine, trimethylamine, isopropylamine) were identified.

  • PDF

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF