• Title/Summary/Keyword: Carbonation resistance

Search Result 190, Processing Time 0.021 seconds

A Study on the Properties of High Volume FlyAsh Concrete (High Volume 플라이애쉬 콘크리트의 내구적 특성 연구)

  • 이진용;손해원;최수홍;정은경;조현수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.203-206
    • /
    • 1999
  • An experimental study is carried out to investigate the characteristics of concrete containing high volume fly ash. The compressive and tensile strength of fly ash concrete is slightly lower than those of ordinary concrete between 7and 28 days, however, the long-term compressive strength is significantly higher at 180 days. In durability, the high volume fly ash concretes are generally higher resistance of freeze and thaw and lowe chloride penetration, however, the depth of carbonation is increased with increasing fly ash content.

  • PDF

An Experimental Study on the Mechanical Study and Durability of PFRC(Polypropylene Fiber Reinforced Concrete) (폴리프로필렌 섬유보강 콘크리트(PFRC)의 역학적 특성 및 내구성에 관한 실험적 연구)

  • 박승범;이봉춘;권혁준;윤준석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.293-298
    • /
    • 1998
  • The result of an experimental study on the mechanical properties and durability of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as strength, toughness and durability. The test variables are fiber content, fiber types, W/C ratio. PFRC shows the highest strength when the polypropylene fiber contents were increased to 2.0 vol.%. Also, freeze-thaw resistance and carbonation were somewhat more improved than plain concrete.

  • PDF

Material Characteristic of POFA Concrete and Its Application to Corrosion Resistance Evaluation (POFA 콘크리트의 재료특성 및 부식 저항성 평가로의 적용)

  • Lee, Chang-Hong;Song, Ha-Won;Ann, Ki-Yong;Ismail, Mohamed Abdel
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • In this study, corrosion resistance of palm oil fuel ash (POFA) concrete as a blended concrete is evaluated by using electrochemical technique. The POFA is an industrial byproduct obtained from fuel ash after extracting palm oil from palm-tree. In order to obtain basic material characteristics of the POFA concrete, tests on compressive strength, slump, weight loss, bleeding and expansion ratio were carried out the early-aged POFA concrete. On the other hand, durability characteristics, both chloride penetration and carbonation depth test, were also conducted. Finally, corrosion resistance were evaluated by applying electro-chemical artificial crack healing technique, and the tests on the impressed voltage characteristic, galvanic current and linear polarization resistance. From the experimental results, it was found that long-term strength, bleeding, lower slump ratio, expansion ratio, chloride penetration, carbonation and corrosion resistance were improved by using the POFA due to activated pozzolanic reaction. It can be also mentioned that POFA concrete has a potential to be used as a cementitious binder for green-recycling resources.

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.

Evaluation of Durability of Cement Matrix Replaced with Ground Calcium Carbonate (중질탄산(重質炭酸)칼슘을 혼합(混合)한 시멘트 경화체(硬化體)의 내구특성(耐久特性) 평가(評價))

  • Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Pak, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.74-80
    • /
    • 2006
  • In this article, we would like to investigate a durability characterization of cement mortar with inert filler, which is ground calcium carbonate(GCC). The kinds of techniques to evaluate cement mortar are chloride ion ingress, carbonation and sulfate attack. For the experimental result of the resistance of chloride ion ingress, carbonation and sulfate attack, as the addition of GCC makes decreasing the permeability by micro-filler effect, the specimens of $5{\sim}15%$ ratio of replacement are superior to the GCC0 mortar specimen with respect to durability of cement matrix in this scope.

Resistance to Freezing and Thawing of Concrete Subjected to Carbonation (탄산화를 받은 콘크리트의 동결융해 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.623-631
    • /
    • 2018
  • In this study, the degree of deterioration of concrete was investigated in the laboratory under conditions of carbonation and freeze-thaw cycling, which are the major causes of the deterioration of its performance. In this test, the carbonated concrete was subjected to combined freeze-thaw deterioration tests for up to 300 cycles, and its dynamic elastic modulus and compressive strength were measured. The evaluation of the effect of the water-binder ratio on normal concrete subjected to combined carbonization and freezing-thawing showed that its resistibility against such combined deterioration decreased more rapidly in the concrete with a water-binder ratio of 55 % compared with that having a water-binder ratio of 35 %. In the case where the concrete was blended with a mineral admixture consisting of fly ash and blast furnace slag at the same water-binder ratio, it showed an increase of its resistibility against combined deterioration.

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

Self Cleaning and Durability of Silicate Impregnant of Concrete (콘크리트 침투성 표면보호재의 자기세정 및 내구특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.433-436
    • /
    • 2008
  • Deterioration in the concrete structure are due to carbonation, chloride ion attack and frost attack. Therefore, concrete structure is needed to surface protection for increase durability using silicate impregnants. Thus, this study is concerned with self-cleaning and durability of silicate hydrophilic impregnants of concrete structure using lithium and potassium silicates. From the experimental test results, lithium and potassium silicates have a good properties as a carbonation resistance. Lithium and potassium silicates make good use of hydrophilic impregnants of concrete structures.

  • PDF

An experimental study on carbonation resistance of Mg(OH)2 mixed cement paste (Mg(OH)2 혼입 시멘트 페이스트의 탄산화 저항성에 관한 실험적 연구)

  • Chen, Zheng-Xin;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.165-166
    • /
    • 2017
  • Corrosion of reinforcement is the main factors affecting the durability of reinforced concrete in the world which lead to the failure of structures of reinforced concrete buildings. In this research, mixed brucite(Mg(OH)2) into ordinary portland cement paste in ratio of 5, 10 and 15% as a kind of CO2 fixation material. Samples were exposed to an accelerated carbonation enslavement of 20% CO2 concentration, 60% relative humidity, and a temperature of 20℃ until tested at 3d, 7d, 14d and 28d. After 28d CO2 accelerated curing, in the paste containing MH megnesian calcite was found by XRD and SEM-EDX. Meanwhile, paste containing Mg(OH)2 exhibit the better pore distribution than ordinary portland cement paste and relatively good compressive strength.

  • PDF