• Title/Summary/Keyword: Carbonation model

Search Result 74, Processing Time 0.016 seconds

Thermodynamic Modelling of Blast Furnace Slag Blended Cement Composites (고로슬래그가 치환된 시멘트복합체의 열역학적 모델링)

  • Yang, Young-Tak;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.488-495
    • /
    • 2017
  • In this study, we conducted the kinetic hydration modeling of OPC and the final product according to the substitution ratio of GGBS by using the geochemical code, GEMS, in order to calculate the thermodynamic equilibrium. The thermodynamic data was used by GEMS's 3rd party database, Cemdata18, and the cement hydration model, the Parrot & Killoh model was applied to simulate the hydration process. In OPC modeling, ion concentration of pore solution and hydration products by mass and volume were observed according to time. In the GGBS modeling, as the substitution rate increases, the amount of C-S-H, which contributes the long-term strength, increases, but the amount of Portlandite decreases, which leads to carbonation and steel corrosion. Therefore, it is necessary to establish prevention of some deterioration.

Development of Testing and Analysis Model for Evaluation of Absorbed Water Diffusion into Concrete (콘크리트 흡수 수분확산계수 산정을 위한 실험 및 수치해석 모델 개발)

  • Park, Dong-Cheon;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Concrete is affected by various deterioration factors, such as $CO_2$ and chloride ions from the sea, which cause carbonation and salt attack on concrete. These deterioration phenomena cause steel corrosion in RC structures. Although a great deal of research has been carried out in this area thus far, it is difficult to know the point at which corrosion will occur to a reinforced bar. As the diffusion of deterioration factors depends on the water content in concrete, it is imperative to assess the condition of absorbed water content. A mass measuring method was applied to calculate the absorbed water diffusion coefficient, as well as non-linear finite element method(FEM) analysis. As a result, it was found that W/C and unit water content in concrete mixture affect the diffusion coefficient decision.

CO2 Fixation by Magnesium Hydroxide from Ferro-Nickel Slag (페로니켈 슬래그로 부터 제조된 Mg(OH)2를 이용한 CO2 고정화)

  • Song, Hao-Yang;Seo, Jong-Beom;Kang, Seong-Kuy;Kim, In-Deuk;Choi, Bong-Wook;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • In this study, the $Mg(OH)_2$ slurry was made form ferro-nickel slag and then used for $CO_2$ sequestration. The experiments were in the order as leaching step, precipitation, carbonation experiments. According to the leaching results, the optimal leaching conditions were $H_2SO_4$ concentration of 1 M and the temperature of 333 K. In the $Mg(OH)_2$ manufacturing step, NaOH was added to increase the pH upto 8, the first precipitation was confirmed as $Fe_2O_3$. After removal the first precipitation, the pH was upto 11, the $Mg(OH)_2$ was generated by XRD analysis. The $Mg(OH)_2$ slurry was used for $CO_2$ sequestration. The pseudo-second-order carbonation model was used to apply for $CO_2$ sequestration. The $CO_2$ sequestration rate was increased by the $CO_2$ partial pressure and temperature. However, $CO_2$ sequestration rate was decreased when temperature upto 323 K. After $CO_2$ sequestrated by $Mg(OH)_2$, the $CO_2$ can be sequestrated stable as $MgCO_3$. This study also presented optimal sequestration condition was the pH upto 8.38, the maximum $MgCO_3$ can be generated. This study can be used as the basic material for $CO_2$ sequestration by ferro-nickel slag at pilot scale in the future.

Long-Term Performance Evaluation of Concrete Utilizing Oyster Shell in Lieu of Fine Aggregate (굴패각을 잔골재로 대체 사용한 콘크리트의 장기성능 평가)

  • Yang, Eun-Ik;Yi, Seong-Tae;Kim, Hak-Mo;Shim, Jae-Seol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • To evaluate the practical application of oyster shells(OS) as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells is appreciably lower than that of normal concrete. Thereby, concrete with higher oyster shell blend has the possibility of negatively influencing the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture rate increases. Namely, the modulus is reduced to approximately 10∼15% when oyster shells are blended up to 20% as the fine aggregate. The drying shrinkage strain increases with an increasing crushed oyster shells substitution rate. In addition, the existing model code of drying shrinkage and creep do not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on fleering and thawing resistance, carbonation and chemical attack of concrete. However, water permeability is considerably improved.