• Title/Summary/Keyword: Carbon-Neutral Society

Search Result 270, Processing Time 0.026 seconds

Isolation and Identification of Pseudomonas sp. CMC-50 Producing Carboxymethyl Cellulase and Characterization of Its Crude Enzyme

  • Kim, Hyun-Joong;Kim, Hae-Yeong
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.74-78
    • /
    • 2000
  • A strain that produces a high level of carboxymethyl cellulase was isolated from rotten leaves. The isolated strain was revealed to be gram-negative, oxidase-positive, and catalase-negative. From the electron microscopic features, it was identified as a rod-shaped bacterium with peritrichous flagella and did not form spores. Morphological and biochemical characteristics of the strain were found to be similar to the Pseudomonas species. However, carbon utilization test showed different results. Based on the results, this new strain was identified as Pseudomonas sp. CMC-50. CMCase produced by this strain showed a strong activity in neutral and weak acidic conditions and maximum activity at $50^{\circ}C$.

  • PDF

A study on Alkalophilic Bacteria Producing $\beta$-Galactosidase. -Isolations and Cultural Characteristics (I)- ($\beta$-Galactosidase를 생산하는 호알카리성 세균에 관한 연구 -균주의 분리 및 배양조건 (I)-)

  • Yun, Seong-Sik;Min, Do-Sik;Yu, Ju-Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.68-75
    • /
    • 1988
  • A strain of alkalophilic Bacillus sp. YS-309 has been isolated from domestic soil. It belongs to genus Bacillus from its morphological and biochemical characteristics. The strain grows better in the alkaline media rather than in the neutral media. The optimum pH and temperature for growth were observed at 8.5 and 4$0^{\circ}C$, respectively. Glucose, lactose and maltose were appeared as good carbon source but soluble starch and fructose were utilized uneffectively for growth. Concentrations of lactose had affected both the cellular growth and the enzyme productions. The maximum growth and the highest enzyme productions were obtained at 0.5%(w/e) of lactose added in the media. B-Galactosidase from Bacillus sp. YS-309 was produced inducibly into the cell and total enzyme activities per ml were gradually decreased when the concentration of glucose increased.

  • PDF

The Influence of Environmental Conditions on the Production of Pigment by Serratia marcescens

  • Hardjito, Linawati;Huq, Anwar;Colwell, Rita R.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.100-104
    • /
    • 2002
  • Serratia marcescens biovar A2/A6, isolated from an Indonesian freshwater source, was identified based on extensive morphological, biochemical and genetic characterization. Formation of pigment was found to be strongly influenced by environmental conditions. Placket-Burman design was used to analyze the effect of carbon and nitrogen sources. Based on results of physiological and biochemical studies, the optimum conditions for growth and pigment formation were incubation 30$^{\circ}C$ in a neutral to slightly alkaline medium containing lactic acid and beef extract.

Development of Industrial Wood Pellet Boiler with High Safety (안전성이 높은 산업용 목재펠릿 보일러 개발)

  • Chung, Chan Hong;Park, Min Cheol;Lee, Seong Young
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.31-44
    • /
    • 2013
  • Recently, due to the high rise of energy costs and environmental problem issues, much attention has been paid to wood pellets. Wood pellets are produced by compressing woody biomass into cylindrical form. Wood pellets are suitable for use at various scales in industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing two industrial wood pellet boilers with high safety having capacities of 290kW and 440kW. Efficiency has been improved by using a rotating screw bar grate burner. Special attention has been paid to the improvement of the safety of the wood pellet boilers from backfire by adopting a triple protecting system composed of a rotary feeder, an air curtain, and a backfire protecting DC-fan.

Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

  • Chaudhry, A.U.;Mittal, Vikas;Mishra, Brajendra
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • The aim of this study was to evaluate the use of iron-nickel oxide ($Fe_2O_3$.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

Combustion Technology for Low Rank Coal and Coal-Biomass Co-firing Power Plant (저급탄 석탄화력 및 석탄-바이오매스 혼소 발전을 위한 연소 기술)

  • Lee, Donghun;Ko, Daeho;Lee, Sunkeun;Baeg, Guyeol
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.129-132
    • /
    • 2013
  • The low rank coal combustion and biomass-coal co-firing characteristics were reviewed on this study for the power plant construction. The importance of using low rank coal(LRC) for power plant is increasing gradually due to power generation economy and biomass co-firing is also concentrated as power source because it has carbon neutral characteristics to reduce green-house effect. The combustion characteristics of low rank coal and biomass for a 310MW coal firing power plant and a 100MW biomass and coal co-firing power plant were studied to apply into actual power plant design and optimized the furnace and burner design.

  • PDF

The relationship between public acceptance of nuclear power generation and spent nuclear fuel reuse: Implications for promotion of spent nuclear fuel reuse and public engagement

  • Roh, Seungkook;Kim, Dongwook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2062-2066
    • /
    • 2022
  • Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.

Current status on Miscanthus for biomass (바이오매스로서의 억새에 대한 연구 동향)

  • Seo, Sang-Gyu;Lee, Jeong-Eun;Jeon, Seo-Bum;Lee, Byung-Hyun;Koo, Bon-Cheol;Suh, Sae-Jung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.320-326
    • /
    • 2009
  • The carbon dioxide concentration of the atmosphere is projected to increase by almost 50% over the first 50 years of this century. The major cause of this increase is continued combustion of fossil fuels. As a result, the significant changes in climate that have already occurred will be amplified, in particular a global temperature increase. Renewable energy production has a central role to play in abating net $CO_2$ emissions to a level that will arrest the development of global warming. Especially, biomass crops are becoming increasingly important as concerns grow about climate change and the need to replace carbon dioxideproducing fossil fuels with carbon-neutral renewable sources of energy. To succeed in this role, biomass crop has to grow rapidly and yield a reliable, regular harvest. A prime candidate is Miscanthus, or Asian elephant grass, a perennial species that produces over 3 metres of bamboo-like stems in a year. Miscanthus species are typically diploid or tetraploid. Hybrids between species with different ploidy levels result in the highly productive triploid hybrids, M. ${\times}$ giganteus. Here we will detail the Miscanthus characteristics desired of a biomass fuel crop.

S. Korea's Approach Strategy through Policy Analysis of Major Countries to Promote the Use of Forest Biomass as Renewable Energy (재생에너지로서 산림바이오매스 활용 촉진을 위한 주요국의 정책분석을 통한 한국의 접근전략)

  • Lee, Seung-Rok;Park, Sehun;Koh, Moon-Hyun;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.10-22
    • /
    • 2022
  • Forest biomass energy is based on scientific evidence in response to carbon neutrality and the climate crisis, international consensus, and environmental-geographic characteristics of each nation. In this study, the authors aimed to analyze macroscopic forest biomass energy policies for ten major countries. They categorized them into six detailed categories (Sustainable utilization, Cascading Uutilization, Replacement of fossil fuel/Carbon intensive products, Utilization of forest by-products/residues as the source of energy, Contribution to carbon-neutral/climate change, and Biomass combined with CCS/CCUS ). In addition, the surveyed nations have developed a policy consensus on the active use of forest biomass with sustainable forest management except for the cascading utilization category. Furthermore, the authors evaluated the mid to long-term plans of the Korean government for improvements in the policy and legal aspects. As a result, the authors derived four major directions that South Korea should approach strategically in the future (1) secure financial resources for sustainable forest management and stimulating investment in the timber industry, (2) promote unified policies to establish a bio-economy, (3) enhancement of the forest biomass energy system, and (4) reorganization and promotion of strategy centered on the opinions of field experts in internal and external instability.

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.