• Title/Summary/Keyword: Carbon-Fiber/Epoxy

Search Result 477, Processing Time 0.024 seconds

A Novel Manufacturing Method for Carbon Nanotube/Aramid Fiber Filled Hybrid Multi-component Composites

  • Song, Young-Seok;Oh, Hwa-Jin;Jeong, Tai-Kyeong T.;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • A novel manufacturing method for hybrid composites filled with carbon nanotubes (CNTs) and aramid fibers is proposed. To disperse the CNTs in the epoxy matrix with the presence of aramid fibers, CNT/polyethyleneoxide (PEO) composites are prepared and utilized because PEO is miscible in the epoxy resin. After thin films are made of the CNT/PEO composite and placed together with the aramid fibers, the epoxy resin is infused to them. The PEO is dissolved in the epoxy and then the CNTs are dispersed in the PEO/epoxy matrix between aramid fibers before the pre-heated matrix is cured. It is found that the PEO is completely miscible with the epoxy resin and CNTs are dispersed well in the space between the aramid fibers.

Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites (탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상)

  • Song, Seung A;On, Seung Yoon;Park, Go Eun;Kim, Seong Su
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.365-370
    • /
    • 2017
  • Mechanical properties of carbon fiber reinforced thermoplastic composites (CFRTPs) are affected by various factors. One of the them are poor compatibility of the epoxy sizing layer on the carbon fiber surface with thermoplastic matrix, which causes the inferior interfacial strength between fibers and matrix. In addition, the high molten-viscosity of thermoplastics attributes to the poor impregnation state. Consequently, many voids in the composite materials were generated, which leads to poor mechanical properties of the thermoplastic composites. In this study, the epoxy sizing on the carbon fiber surface was removed and the polyamide 6,6 solution was coated on the de-sized carbon fiber surface to improve the impregnation state and mechanical properties. Interlaminar shear strength (ILSS) of CFRPTs was estimated by implementing short beam shear tests. In addition, flexural strength was measured and the impregnation state of the composites was evaluated by calculating void content.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites (메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질)

  • HAN GIL-YOUNG;AHN DONG-GU;KIM JIN-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF

Effects of the Point Angle on Drilling Characteristics Carbon Fiber Epoxy Composite Materials Using WC-drill Drilling (초경드릴을 이용한 탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 선단각의 영향)

  • 김형철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.85-91
    • /
    • 1996
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting condition in order to minimize the problems occured in the material when being drilled. It has been comfirmed by a frequencyanalysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the rotating drill and the stacking angle of the carbon fiber. The drilling experiment has been done with several drills having different point angles and the drilling characteristics, like the effects such that change in the point angle influences the cutting force and the external surface condition, was evaluated.

  • PDF

Mechanical Properties of MWNT-Loaded Plain-Weave Glass/Epoxy Composites

  • Kim, Myung-Sub;Lee, Sang-Eui;Lee, Won-Jun;Kim, Chun-Gon
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.209-219
    • /
    • 2009
  • Carbon nanotubes (CNTs) have shown great potential for the reinforcement of polymers or fiber-reinforced composites. In this study, mechanical properties of multi-walled carbon nanotube (MWNT)-filled plain-weave glass/epoxy composites intended for use in radar absorbing structures were evaluated with regard to filler loading, microstructure, and fiber volume fraction. The plain-weave composites containing MWNTs exhibited improved matrix-dominant and interlaminar fracture-related properties, that is, compressive and interlaminar shear strength. This is attributed to strengthening of the matrix rich region and the interface between glass yarns by the MWNTs. However, tensile properties were only slightly affected by the addition of MWNTs, as they are fiber-dominant properties.

Interfacial Properties and Residual Stress of Carbon Fiber/Epoxy-AT PEI Composite with Matrix Fracture Toughness using Microdroplet Test and Electrical Resistance Measurements (Microdroplet 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 수지파괴인성에 따른 잔류응력 및 계면물성)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • Interfacial and electrical properties for the carbon fiber reinforced epoxy-amine terminated (AT) PEI composites were performed using microdroplet test and electrical resistance measurements. As AT PEI content increased, the fracture toughness of epoxy-AT PEI matrix increased, and IFSS was improved due to the improved toughness and energy absorption mechanisms of AT PEI. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 wt% AT PEI content, ductile microfailure mode appeared because of improved fracture toughness. After curing, the changes of electrical resistance (ΔR) with increasing AT PEI content increased gradually because of thermal shrinkage. The matrix fracture toughness was correlated to IFSS, TEC and electrical resistance. In cyclic strain test, the maximum stress and their slope of the neat epoxy case were higher than those of 15 wt% AT PEI. The results obtained from electrical resistance measurements under curing process and reversible stress and strain were consistent well with matrix toughness properties.

  • PDF

Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing (젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능)

  • Jang, Jung-Hoon;Wang, Zuo-Jia;GnidaKouong, Joel;Gu, Ga-Young;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

  • PDF

A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature (극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구)

  • Hong, Joong-Sik;Kim, Myung-Gon;Kim, Chun-Gon;Kong, Cheol-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF