• Title/Summary/Keyword: Carbon-Carbon Composites

Search Result 2,123, Processing Time 0.028 seconds

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery (유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화)

  • Shin, Jae-Sung;Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2017
  • Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

A Study on the Fracture Behavior of CFRP in Tensile and Fracture Toughness Tests by Acoustic Emission (음향방출법에 의한 탄소 섬유 복합 재료의 인장 및 파괴 인성시험시의 파괴 거동에 관한 연구)

  • Lee, Sang-Guk;Oh, Sae-Kyoo;Nam, Ki-Woo;Kim, Og-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.277-290
    • /
    • 1995
  • The study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in owe process of the carbon fiber reinforced composites of two types, $[0^{\circ}/90^{\circ}]_{2S}$ and $[0^{\circ}\;_2/90^{\circ}\;_2]_S$. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of $[0^{\circ}/90^{\circ}]_{2S}$ specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively.

  • PDF

Field emission properties of Ag-Cu-alloy coated CNT-emitters (Ag-Cu합금 코팅된 탄소나노튜브의 전계방출 특성)

  • Lee, Seung-Youb;Ryul, Dong-Heon;Hong, Jun-Yong;Yeom, Min-Hyeng;Yang, Ji-Hoon;Choi, Won-Chel;Kwon, Myeng-Hoi;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.291-297
    • /
    • 2007
  • The field emission properties of CNT-emitters coated with Ag-Cu alloy have been investigated. The vertical aligned multi-walled CNTs were synthesized by dc-plasma enhanced chemical vapor deposition (dc-PECVD) and the Ag-Cu alloy was coated by using dc-magnetron sputter. The morphology of alloy-coated and un-coated CNT-emitters was observed by using SEM and their field emission properties were also measured. Annealing the AgCu-coated CNTs at temperature more than ${\sim}700^{\circ}C$, the Ag-Cu alloy was diffused to and aggregated on the top of the CNT as a Q-tip. A significant progress on the field emission was not observed with coating Ag-Cu alloy on the CNTs, but a certain improvement in a resistance against oxygen gas was made confirmation. It seems to be due to inertness of Ag-Cu alloy on the CNTs.

Flame Retardancy and Foaming Properties of the Waste-Polyethylene(W-PE)/Waste-Ethylene vinyl acetate copolymer(W-EVA) Blend Foams (폐폴리에틸린/폐에틸렌 비닐아세테이트공중합체 블렌드 발포체의 난연 및 발포 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 2003
  • The blends of waste-polyethylene (W-PE)/waste-ethylene vinyl acetate copolymer (W-EVA) with inorganic and phosphorous flame retardants (i.e., aluminium hydroxide, magnesium hydroxide, and so on) were prepared by melt mixing techniques at different compositions and foamed. The flame retardancy and foaming properties of the blends, limiting oxygen index (LOI), heat release rate (HRR), carbon monoxide yield (COY), total heat release (THR), effective heat of combustion (EHC), expandability and cell structure were investigated using cone calorimeter, SEM, LOI tester and polarizing microscope. When the composition ratios of the W-PE/W-EVA blends were 50/50 (w/w), and the ranges of the flame retardants contents were $175{\sim}220 phr$, we could obtain foams with the uniform and closed cell, high expandability (1900 % or more), high LOI, and low HRR values. These results depend on crosslinking and loaming conditions, a char formation and smoke suppressing effect. Aluminium hydroxide had more effect in the increase of LOI than magnesium hydroxide, while magnesium hydroxide considerably affected the decrease of HRR and COY.

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF