• Title/Summary/Keyword: Carbon yield

Search Result 1,170, Processing Time 0.027 seconds

Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions

  • Girgis, Badie S.;Elkady, Ahmed A.;Attia, Amina A.;Fathy, Nady A.;Abdel Wahhab, M. A.
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.114-122
    • /
    • 2009
  • Crushed, depitted peach stones were impregnated activated with 50% $H_3PO_4$ followed by pyrolysis at $500^{\circ}C$. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional $N_2$ adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.

Effects of Varying Nutritional and Cultural Conditions on Growth of the Ectomycorrhizal Fungus Pisolithus tinctorius SMF

  • Suh, Hyung-Won;Don L. Crawford
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.121-125
    • /
    • 1991
  • The culture conditions and nutritional requirements for enhanced mycelial growth of the ectomycorrhizal fungus P. tinctorius SMF were determined in flask scale experiments. Optimum culture conditions for growth of P. tinctorius SMF in a further modified Melin-Norkrans broth were as follows; temperature 25~$27^{\circ}C$, agitation 120 rpm, and pH 4.0. P. tinctorius SMF utilized various carbon sources including monosaccharides, disaccharides, and polysaccharides. D-Glucose and mannitol were respectively the first and second most suitable carbon sources for mycelial growth. With D-Glucose as the principal carbon source, supplementation of modified Melin-Norkrans (MMN) broth with Lysine (800 mg/l), Glutamic Acid (500 mg/l), or Proline (50 mg/l) enhanced mycelial yields 63%, 34%, and 22% respectively as compared to growth in medium lacking amino acids. ThiaminㆍHCl+biotin+pyridoxine supplementation also enhanced growth. As compared to mycelial growth in the MMN medium, growth of P. tinctorius SMF was enhanced 120% in MMN broth when the carbon/nitrogen ratio was 25/1 in citrate buffer at pH 4.5, and growth was 50% greater in MMN broth of carbon/nitrogen ratio with a 10/1~20/1 without using the buffer. Standard conditions established for growth of P. tinctorius SMF in MMN broth were 25~$27^{\circ}C$, agitation 120 rpm, buffered to pH 4.0 with citrate, in MMN medium containing 10 g/l D-glucose supplemented with 800 mg/l lysine. In this medium the carbon/nitrogen ratio was 20/1~25/1, and the maximal mycelial yield ($Y_{x/s}$ ) was 0.472 (4.72 mg/ml) after 7 days of incubation, as compared to 0.214 (2.14 mg/ml), when the fungus was grown in standard MMN broth.

  • PDF

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • v.21
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

Modification of isotropic coal-tar pitch by acid treatments for carbon fiber melt-spinning

  • Yoo, Mi Jung;Ko, Hyo Jun;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this work, thermal treatment accompanied with different acid treatments was applied to a commercial coal tar pitch (CTP) to obtain a spinnable precursor pitch for carbon fiber. In the case of thermal treatment only, a relatively high reaction temperature of between $380^{\circ}C$ and $400^{\circ}C$ was required to obtain a softening point (SP) range of $220^{\circ}C-260^{\circ}C$ and many meso-phase particles were created during the application of high reaction temperature. When nitric acid or sulfuric acid treatment was conducted before the thermal treatment, the precursor pitch with a proper SP range could be obtained at reaction temperatures of $280^{\circ}C-300^{\circ}C$, which were about $100^{\circ}C$ lower than those for the case of thermal treatment only. With the acid treatments, the yield and SP of the precursor pitch increased dramatically and the formation of meso-phase was suppressed due to the lower reaction temperatures. Since the precursor pitches with acid and thermal treatment were not spinnable due to the inhomogeneity of properties such as molecular weight distribution and viscosity, the CTP was mixed with ethanol before the consecutive nitric acid and thermal treatments. The precursor pitches with ethanol, nitric acid, and thermal treatments were easily spinnable, and their spinning and carbon fiber properties were compared to those of air blowing and thermal treated CTP.

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

Carbon nanotube-biomorphic composites and filter application: A Review

  • Jung Gyu Park;Se Young Kim;Insub Han;Ik Jin Kim
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.2
    • /
    • pp.170-191
    • /
    • 2020
  • As interest in environmental pollution has increased, research in the field of filtration has been concentrated. While various types of filters have been developed, research on nanomaterial filtration has been limited. Since then, the development of new materials such as carbon nanotubes (CNTs) has accelerated the study of new filters. Especially, CNTs have been among the most attractive materials ever synthesized for the development of nano-technologies. However, there are fundamental technical problems to be solved the development of new CNT composites. One of these problems is the development of a CNTs filter with excellent adsorption behavior and a filter that is capable of filtering a specific substance. In addition, it is necessary to develop a technology to increase the uniform distribution of CNTs, and to reduce the high processing cost of CNT composite production. In general, the chemical pathways for the production of CNTs include hydrocarbon gases, such as methane (CH4) and acetylene (C2H2), through metal nanoparticle catalysts. However, nano-metal particles have a strong coagulation phenomenon at high temperature by catalytic chemical vapor deposition (CCVD) method. In this review, attempts were made by applying three different reaction techniques to form CNTs on biomorphic carbon materials (BCM) coated with catalyst materials to control the shape and size of CNTs. Hierarchical carbon substrates with pore size of 100 ~ 300 ㎛ were developed using carbonization reaction. Linde type A (LTA) zeolite, silicalite-1, and mesoporous SiO2 template crystals were simultaneously synthesized and coated on the BCM by an in-situ hydrothermal process to synthesize high-yield CNTs composites.

Evaluation of Optimum Conditions for Bacteriocin Production from Lactobacillus sp. JB-42 Isolated from Kimchi

  • Jo, Young Bae;Kyung Mi Bae;Sung Koo Kim;Hong Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.63-67
    • /
    • 1996
  • Bacteriocin-producing microorganism was isolated from Kimchi. The microorganism was identified as a Lactobacillus sp. and named Lactobacillus sp. JB-42. The optimum conditions for the bacteriocin production from the isolated microorganism were evaluated. For the maximum yield of bacteriocin from Lactobacillus sp. JB-42, the cell should be harvested at the early stationary phase and the temperature, pH and NaCl concentration should be $30^{\circ}C$, pH 7 and without the addition of NaCl, respectively. Sucrose, glucose or fructose should be used as a carbon source and organic nitrogen such as tryptone should be used as a nitrogen source for the best yield. The production of bacteriocin was related to the cell growth of Lactobacillus sp. JB-42 indicating the role of Lactobacillus in the Kimchi fermentation process.

  • PDF

Novel route of enhancing the metal loading in highly active Pt/C electro-catalyst by polyol process (Polyol process를 통한 고비율 백금 담지 촉매 합성)

  • Oh, Hyung-Suk;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A modified polyol process is developed to enhance Pt loading during the preparation of Pt/C catalysts. With the help of the zeta potential, the effect of pH on the electrostatic forces between the support and the Pt colloid is investigated. It is shown experimentally that the surface charge on the carbon support becomes more electropositive when the solution pH is changed from alkaline to acidic. However, this change does not affect the electronegative surface charge of Pt colloids already attained and stabilized by glycolate anions. This new behavior caused by the change in the solution pH accounts for the enhanced yield of the process and does not affect the Pt particle size. All our experimental results reveal that this simple modification is a cost effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells.

  • PDF

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF

Optical Resolution of DL-Pipecolic Acid by Fermentation Using Pseudomonas sp. PA09

  • Kim, Chan-Soo;Lee, Il-Seok;Chung, Nam-Hyun;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.217-221
    • /
    • 2001
  • Pseudomonas sp. PA09 was isolated from farm soil and used for the optical resolution of D-pipecolic acid from DL-popecolic acid. The strain PA09 consumed L-pipecolic acid preferentially as the sole carbon and energy source, thus accumulating D-pipecolic acid in the culture broth. Optimization to improve the enantiomeric excess and yield was performed. The time course experiment showed that the strain OP09 consumed L-pipecolic acid almost to completion after 35h of cultivation, and the enantiomeric excess and the yield (% of residual D-pipecolic acid) were 99.8 and 96.0%, respectively.

  • PDF