• Title/Summary/Keyword: Carbon yield

Search Result 1,167, Processing Time 0.029 seconds

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei;Yongbo Shao;Mostafa Fahmi Hassanein;Chuannan Xiong;Hongmei Zhu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2023
  • To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

Photochemical Synthesis of Phenylglycine (페닐글리신의 광화학적 합성)

  • Sang Chul Shim;Chung Hak Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.229-235
    • /
    • 1976
  • Phenylacetic acid is chlorinated photochemically in carbon disulfide and carbon tetrachloride solvents to obtain ${\alpha}$-chlorophenylacetic acid in $43{\%}$ yield (after separation and purification). The amination of ${\alpha}$-chlorophenylacetic acid yielded the desired dl-phenylglycine in $16\sim27{\%}$ yield depending on the solvent used. Sensitized photophenylation of glycine is also attempted utilizing benzoylperoxide as a phenyl radical source in benzene or acetone solvent.

  • PDF

Study of hemicellulose B recovery yield from rice bran

  • Park, Jeom-Seok;Kim, Min-Seok;Ji, Yeong-Min;Choe, Jeong-U;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.257-260
    • /
    • 2003
  • Hemicelluloses, one of the most abundant natural polysaccharides, are comprised roughly in one-fourth to one-third of most plant materials. Hemicelluloses contain mixtures of 50-200 five-carbon sugars(xylose and arabinose) and six-carbon sugars(glucose, galactose, mannose, and rhamnose), plus lesser amounts of the sugar acids(glucuronic acid and galacturonic acid). The kinds of hemicelluloses are A, B, and C. The interesting substance of them is hemicellulose B. However, the prodution level of hemicellulose B is very low. Thus, this study was concentrated on increasing the recovery yield of hemicellulose B from rice bran.

  • PDF

New Technique of Maltose Manufacturing and its uses in Food Industry (새로운 맥아당 제조기술과 식품공업이용)

  • 이성갑
    • Journal of the Korean Professional Engineers Association
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 1984
  • When starch is hydrolyzed either by acid or by the enzymes maltase or diastase, contained in germinating barley, a yield of 80% of maltose is obtained. Maltose is built of two molecules of ${\alpha}$-glucose, bound in the position 1:4 i.e., carbon atom 1 of one glucose molecule is bound in a glucosidic bond to carbon atom 4 of the second molecule. Until around 1960, dextrose and glucose syrups were prepared from starch exclusively by acid hydrolysis. The process was corrosive, and the dextrose yield low. It was, therefore, a great step forward when pure glucoamylase in combination with bacterial ${\alpha}$-amylase made possible a complete enzymatic hydrolysis of starch to dextrose. Today several enzymatic processes are used in the industry.

  • PDF

Anatomical Differentiation and Photosynthetic Adaptation in Brown Algae

  • Garbary, David J.;Kim, Kwang-Young
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.233-238
    • /
    • 2005
  • The photosynthetic parameters of dark- adapted minimum fluorescence (Fo) and maximum quantum yield of charge separation in PSII (Fv/Fm) were measured in transverse sections of eight species of marine Phaeophyceae (species of Laminariales, Fucales, Desmarestiales, Chordariales) using pulse amplified modulation (PAM) fluorometry. Within each transverse section fluorescence was measured in three regions corresponding to outer cortical and meristoderm cells, inner cortical cells and innermost medullary cells. Minimum fluorescence declined from 19-74% (mean of 39%) from outermost to innermost cells. Maximum quantum yield varied from 0.51-0.59 in outermost cell layers and this was reduced to 0.23-0.40 in innermost cell layers, with an average reduction of 50%. Despite the reduction Fo in medullary cells (inner), medullas of all species showed maximum quantum yields consistent with a photosynthetic role in carbon fixation. These results show that medullary cells of complex brown algae have more than a role in structure, storage or transport, and may also provide an important role in carbon fixation.

Supercritical Carbon Dioxide Extraction of Oil from Chlorella vulgaris (초임계 이산화탄소를 이용한 Chlorella vulgaris의 오일 추출)

  • Ryu, Jong-Hoon;Park, Mi-Ran;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.453-458
    • /
    • 2011
  • In this study, two different extraction techniques, organic solvent extraction and supercritical carbon dioxide ($SCCO_2$) extraction, were employed to evaluate the extraction efficiency of oil from Chlorella vulgaris. In the organic solvent extraction, the effects of various organic solvent on the extraction yield were investigated. The $SCCO_2$ extraction was carried out while varying such operating parameters as temperature, pressure, $SCCO_2$ flow rate, and cosolvent. About 4.9 wt% of oil was extracted from ground Chrollera vulgaris for 18 h when dichloromethane/methanol (2:1, v/v) was used as an extraction solvent. The oil yield of the $SCCO_2$ extraction was found to be very low (0.53 wt%) and to increase up to about 0.86 wt% with the addition of cosolvent.

Separation of Single-Walled Carbon Nanotubes by Length and Diameter (단일벽 탄소 나노튜브의 길이와 지름에 따른 분류)

  • Oh Young-Seok;Lee Dock-Jin;Chang Yyun-Seok;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.171-178
    • /
    • 2006
  • The sonication mettled is widely used with surfactants to suspend individual single-walled carbon nanotubes in solution, and it is well known that sonication-induced tube cutting occurs. Recently, it is found out that ultrasonicated nanotubes yield simultaneous separation by tube length and diameter. Nanotubes that have been cut shortest possess the greatest enrichments of large-diameter species. In this study, single-walled carbon nanotubes are cut using a ball milling method. Similar fracture behavior is observed fur the ball milled nanotubes: i.e., large diameter tubes are cut shorter. The ability to separate carbon nanotubes by diameter and length will contribute to tile development of nanotube-based applications.