• Title/Summary/Keyword: Carbon yield

Search Result 1,167, Processing Time 0.028 seconds

Estimation of Ultimate Methane Yields and Biodegradability from Urban Stream Sediments Using BMP Test (BMP(Biochemical Methane Potential) test를 통한 도심하천 퇴적물의 최종메탄발생수율 및 생분해도 산정)

  • Song, Jaehong;Kim, Seogku;Lee, Junki;Koh, Taehoon;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.33-42
    • /
    • 2010
  • The main objective of this study was to offer informations about the current conditions of stream sediments and to evaluate biochemical methane potentials of stream sediments from the urban streams in Busan city using conventional BMP tests. First we select total 5 urban streams and collect sediment samples. Then, COD, proximate analysis, volatile solid, organic carbon content and elemental analysis were conducted to determine characteristics of the sediments. Results show that COD, volatile solid and organic carbon content are determined in the range of $15.20{\sim}75.07mg\;g^{-1}$, 2.34~11.54% and 1.28~34.21%, respectively. Also, several biochemical methane potential tests were performed in a laboratory. As a result, pH values of the reactors generally increased and then stabilized at 7.11~7.35. In addition, C/N ratio, ultimate methane and carbon dioxide yield (mL/g VS) and biodegradability (%) were determined to 1.05~10.27, 10.1~179.4, 10.3~34.4 and 4.0~30.1, respectively. For the determination of the correlations between ultimate methane yield and ultimate carbon dioxide yield, C/N ratio, COD, volatile solid and organic carbon content, a linear model was fitted to the data using a least-squares algorithm. As a result, except for COD ($r^2=0.7586$) and volatile solid ($r^2=0.7876$), Linear model was well fitted to each data with good values of the correlation coefficient ($r^2=0.9795{\sim}0.9858$). Finally, we propose empirical equations, which contain C/N ratio or TOC, for the prediction of ultimate methane yield for the urban streams in Busan city.

Modification of Coal-Tar-Pitch and Carbon Fiber Properties by Polymer Additives (고분자 첨가에 의한 콜타르 핏치의 결정성 및 탄소섬유 물성 변화)

  • Kim, Jung-Dam;Yun, Jae-Min;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • In order to use coal tar pitch (CTP) as a raw material for carbon fibers, it should have suitable properties such as a narrow range of softening point, suitable viscosity and uniform optical properties. In this study, raw CTP was modified by heat treatment with three types of polymer additives (PS, PET, and PVC) to make a spinnable pitch for carbon fibers. The yield, softening point, C/H ratio, insoluble yield, and meso-phase content of various modified CTPs with polymer additives were analyzed by changing the type of polymer additive and the heat treatment temperature. The purpose of this study was to compare the properties of CTPs modified by polymer addition with those of a commercial CTP. After the pitch spinning, the obtained green fibers were stabilized and carbonized. The properties of the respective fibers were analyzed to compare their uniformity, diameter change, and mechanical properties. Among three polymer additives, PS220 and PET261 pitches were found to be spinnable, but the carbon fibers from PET261 showed mechanical properties comparable with those of a commercial CTP produced by an air-blowing method (OCI284). The CTPs modified with polymer additive had higher ${\beta}$-resin fractions than the CTP with only thermal treatment indicating a beneficial effect of carbon fiber application.

Preparation of Nitrogen-doped Carbon Nanowire Arrays by Carbonization of Mussel-inspired Polydopamine

  • Oh, Youngseok;Lee, Jea Uk;Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.132-137
    • /
    • 2016
  • Based on mussel-inspired polydopamine (PDA), a novel technique to fabricate carbon nanowire (CNW) arrays is presented for a possible use of porous carbon electrode in electrochemical energy storage applications. PDA can give more porosity and nitrogen-doping effect to carbon electrodes, since it has high graphitic carbon yield characteristic and rich amine functionalities. Using such outstanding properties, the applicability of PDA for electrochemical energy storage devices was investigated. To achieve this, the decoration of the CNW arrays on carbon fiber surface was performed to increase the surface area for storage of electrical charge and the chemical active sites. Here, zinc oxide (ZnO) nanowire (NW) arrays were hydrothermally grown on the carbon fiber surface and then, PDA was coated on ZnO NWs. Finally, high temperature annealing was performed to carbonize PDA coating layers. For higher energy density, manganese oxide ($MnO_x$) nanoparticles (NPs), were deposited on the carbonized PDA NW arrays. The enlarged surface area induced by carbon nanowire arrays led to a 4.7-fold enhancement in areal capacitance compared to that of bare carbon fibers. The capacitance of nanowire-decorated electrodes reached up to $105.7mF/cm^2$, which is 59 times higher than that of pristine carbon fibers.

Rice Yield Response to Biochar Application Under Different Water Managements Practices

  • Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.16-19
    • /
    • 2012
  • Increasing rice grain yield is critical for feeding rapid increasing of Asian population. However, global warming effect may be negative for sustainable rice production. Therefore it is essential to develop technologies not only for increasing grain yield but also for reducing global warming effect. Biochar, which is carbonized biomass, has a great potential of carbon sequestration and soil quality improvement, which can contribute grain yield increasing. In this study, rice yield responses to biochar application on the rice cropping system were evaluated with field experiments under different water management practices at the research farm of the University of Missouri-Columbia Delta Research Center, Portageville, MO. Biochar (i.e., $4Mg\;ha^{-1}$) was produced using field scale pyrolyzer and incorporated into the field 4 months prior to planting. Rice was grown under three different water management practices. Result showed that no significant yield difference was found in the biochar application plots compared to rice hull and control plots from the 2 years field study at the very fertile soil. However, rainfed management results in severe reduction of yield. Research concludes that the biochar application does not significantly influence on rice yield increasing especially for very fertile soils.

Effect of Nitrogen Source on the Growth of Azotobacter vinelandii UWD and Production of Biodegradable Plastics in the Mixture of Organic Acids and Glucose (유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 생분해성 고분자 생산에 대한 질소원의 영향)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.626-630
    • /
    • 1998
  • Ammonium limitation did not promote ply(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production of Azotobacter vinelandii UWD. In acid phase, ammonium limitation during utilization of propionic acid and butyric acid led to 35% decrease in product yield. In glucose phase, both biomass yield and polymer yield decreased about 22% under ammonium limitation. However, in nitrogen-fixing culture glucose was consumed 25% faster and the final PHBV wt% decreased slightly. Under nitrogen limitation a portion of the carbon sources was used fro nitrogen fixation rather than biomass and polymer formation, resulting in a decrease in biomass yield and polymer yield.

  • PDF

Potential of Activated Carbon Derived from Local Common Reed in the Refining of Raw Cane Sugar

  • D-Abdullah, Ibrahim;Girgis, Badie S.;Tmerek, Yassin M.;Badawy, Elsaid H.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.192-200
    • /
    • 2010
  • Common reed (Fragmites australis), a local invasive grass, was investigated as a possible feedstock for the production of activated carbon. Dried crushed stems were subjected to impregnation with phosphoric acid (30, 40 and 50%) followed by pyrolysis at $400{\sim}500^{\circ}C$ with final washing and drying. Obtained carbons were characterized by determining: carbon yield, ash content, slurry pH, textural properties and capacity to remove color bodies from factory-grade sugar liquor. Produced carbons possessed surface area up to 700 $m^2/g$, total pore volumes up to 0.37 $cm^3/g$, and proved to be microporous in nature. Decolorization of hot sugar liquor at $80^{\circ}C$ showed degrees of color removal of 60 up to 77% from initial color of 1100~1300 ICU, at a carbon dose of 1.0 g/100 ml liquor. No correlation seems to hold between synthesis conditions and % R but depends on the degree of microporosity. A commercial activated carbon N showed a comparative better color removal capacity of 91%. Common reed proved to be a viable carbon precursor for production of good adsorbing carbon suitable for decolorization in the sugar industry, as well as in other environmental remediation processes.

Properties of Activated Carbon Blacks Filled SBR Rubber Composites

  • Ao, Geyou;Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Rubber reinforcing carbon black N330 was treated by physical activation under $CO_2$ to different degrees of burn-off. The mechanical properties indicating the reinforcement of SBR (Styrene-Butadiene Rubber) vulcanizates filled by activated carbon blacks, such as tensile strength, modulus at 300% strain and elongation at break were determined. During $CO_2$ activation of fresh carbon blacks, the development of microporous structure caused an increase of extremely large specific surface area and the porosity turned out to be an increasing function of the degree of burn-off. The tensile strength and modulus at 300% of activated carbon blacks filled rubber composites were improved at lower loading ratios of 20 and 30 phr, but decreased drastically after 30 phr, which is considered that it might be difficult to get a fully dispersed rubber mixture at higher loading ratios for fillers having very large specific surface areas. However, the Electromagnetic Interference (EMI) shielding effectiveness of SBR rubber composites having activated carbon black at 74% yield were improved at a large extent when compared to those having raw carbon black and increased significantly as a function of increasing loading ratio.

Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding (선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.

Preparation of Porous Carbon Support Using Carbon Nanofiber (나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성)

  • 김명수;정상원;우원준;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

Energy Saving Effects of Carbon Nano Heating Pipe for Heating of Greenhouse (탄소나노히팅파이프를 이용한 온실 난방에너지 절감효과)

  • Paek, Y.;Jeon, J.G.;Yun, N.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2011
  • This carbon nano heating system was consisted of power supply equipment, a carbon fiber and a stainless flexible hose. carbon nano heating system was manufactured by carbon fiber of a power capacity 30kw/h and light-oil hot air heater in control plot was the heating capacity 30,000kcal/h, As the result, Temperature difference due to carbon nano heating system and hot air heater in greenhouse showed that air temperature at experimental greenhouse, comparison greenhouse were $14.8^{\circ}C$, $13.4^{\circ}C$ respectively. It was found that carbon nano heating system and light-oil hot air heater heating cost were 1,095,740won, 2,683,628won. therefore as heating cost saving 60%. Yield of tomatoes cultured in greenhouse using carbon nano heating pipe was 4% inclease. Economic analysis comparison between the carbon nano heating pipe and the hot air heater in greenhouse were 41% respectively.