• Title/Summary/Keyword: Carbon reinforced plastic(CRP)

Search Result 4, Processing Time 0.016 seconds

Vibration Isolation Characteristics of CRP Materials and SNORE Ring on the Multi-Curved Structure (CRP 재질 및 SNORE 링 부착에 따른 다층 곡면 구조물의 진동 차단 특성 연구)

  • Lee, Jong-Kil;Jo, Chi-Yong
    • 대한공업교육학회지
    • /
    • v.35 no.2
    • /
    • pp.224-237
    • /
    • 2010
  • When the underwater structure sails high speed, noise and vibration propagate to the sensor in the nose of the dome. In this paper, to avoid this kind of noise and vibration CRP(Carbon Reinforced Plastic) material and SNORE ring(Self-NOise REduction Ring) are attached at the curved structure and simulates its isolation characteristics using commercial software. Vibration displacement and stress are calculated at the planar sensor array. The material of the curved structure is aluminum and maximum outer diameter is 53Omm, 215mm in length, 270mm in planar diameter, respectively. Based on the simulation results, reduction ratio of the received normal stress at the sensor is above 95% at the frequency of 12kHz and 15kHz. At the mid point of the planar sensor the normal stress is higher than 20mm and 40mm apart. This results can be used to increase the sensitivity of the acoustic sensor as a basic data.

  • PDF

Acoustic and Vibration Isolation Characteristics Using SNORE Ring in the Structure (소음 차단링을 이용한 구조물의 음향진동 차단 특성 연구)

  • Lee, Jong-Kil;Ku, Jeong-Mo;Jo, Chee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.336-337
    • /
    • 2010
  • In the underwater veicle self-noise from the propeller reduces the sensor sensitivity. To increase the sensor sensitivity SNORE ring(Self-noise reduction ring) has been used. In this paper to calculate the effectiveness of the SNORE ring and de-coupeler numerical simulation is conducted. Based on the simulation results CRP(Carbon reinforced plastic)and SNORE ring reduced noise and vibration.

  • PDF

An Acoustic Reception Ability Analysis of SONAR Multilayer Structures by Using Elastic Theory (탄성이론을 이용한 소나 다층구조물의 음향 수신 성능해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Sung-Hee;Jeon, Jae-Jin;Seo, Young-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SONAR detection performance is one of the key survivability factors in underwater weapon systems. In order to catch the acoustic ability of SONAR, multilayer SONAR structures are analyzed using the elastic theory. The applied results for the simple models are compared with those from commercial program, ANSYS, and the reliable results are obtained. The analysis of sound pressure level (SPL) and echo reduction (ER) by the thickness change of multilayer SONAR structures are performed using the verified elastic theory. As the thickness of anechoic layer is increased, SPL is distributed evenly and ER is increased slightly with the frequency. In decoupling layers and steel layers, SPL are hardly changed and ER is slightly decreased with the thickness increase of those layers. SPL and ER are not affected by the thickness change of the carbon reinforced plastic (CRP) layer. Therefore, to improve the acoustic ability of multilayer SONAR structures, the thickness increase of the anechoic layer and minimization of the decoupling layer, steel layer and CRP layer are desirable.

Investigation Into the Drilling Characteristics of Carbon Fiber Reinforced Plastic (CFRP) with Variation of the Stacking Sequence Angle (탄소섬유강화플라스틱(CFRP)의 적층 배향각에 따른 드릴링 가공 특성 고찰)

  • Kim, Tae-Young;Kim, Ho-Seok;Shin, Hyung-Gon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.250-258
    • /
    • 2014
  • Due to recent industrial growth and development, there has been a high demand for light and highly durable materials. Therefore, a variety of new materials has been developed. These new materials include carbon fiber reinforced plastic (CFRP or CRP), which is a wear-, fatigue-, heat-, and corrosion-resistant material. Because of its advantageous properties, CFRP is widely used in diverse fields including sporting goods, electronic parts, and medical supplies, as well as aerospace, automobile, and ship materials. However, this new material has several problems, such as delamination around the inlet and outlet holes at drilling, fiber separation, and tearing on the drilled surface. Moreover, drill chips having a fine particulate shape are harmful to the work environment and engineers' health. In fact, they deeply penetrate into machine tools, causing the reduction of lifespan and performance degradation. In this study, CFRP woven and unidirectional prepregs were formed at $45^{\circ}$ and $90^{\circ}$, respectively, in terms of orientation angle. Using a high-speed steel drill and a TiAIN-coated drill, the two materials were tested in three categories: cutting force with respect to RPM and feed speed; shape changes around the input and outlet holes; and the shape of drill chips.