• Title/Summary/Keyword: Carbon potential

Search Result 1,721, Processing Time 0.027 seconds

Zeta-potentials of Oxygen and Nitrogen Enriched Activated Carbons for Removal of Copper Ion

  • Park, Kwan-Ho;Lee, Chang-Ho;Ryu, Seung-Kon;Yang, Xiaoping
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.321-325
    • /
    • 2007
  • The oxygen and nitrogen enriched activated carbons were obtained from modification of commercial activated carbon by using nitric acid, sodium hydroxide and urea. Zeta-potentials of modified activated carbons were investigated in relation to copper ion adsorption. The structural properties of modified activated carbons were not so much changed, but the zeta-potentials and isoelectric points were considerably changed. The zeta-potential of nitric acid modified activated carbon was the most negative than other activated carbons in the entire pH region, and the $pH_{IEP}$ was shifted from pH 4.8 to 2.6, resulted in the largest copper ion adsorption capacities compare with other activated carbons in the range of pH 3~6.5. In case of urea modified activated carbon, copper ion adsorption was larger than that of the as-received activated carbon from pH 2 to pH 6.5 even though the $pH_{IEP}$ was shifted to pH 6.0, it was due to the coordination process operated between nitrogen functional groups and copper ion. The adsorption capacity of copper ion was much influenced by zeta-potential and $pH_{IEP}$ of carbon adsorbent.

The Carbon Sequestration Potential of Forestry Sector: Bangladesh Context

  • Sohel, Md. Shawkat Islam;Rana, Md. Parvez;Alam, Mahbubul;Akhter, Sayma;Alamgir, Mohammed
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.157-165
    • /
    • 2009
  • Forests potentially contribute to global climate change through their influence on the global carbon (C) cycle. The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland, which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries like Bangladesh for full-scale emission mitigation, the carbon sequestration potential should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming.

  • PDF

Penetration behavior by carbon potential in laser-carburized TiZrN coatings (TiZrN 코팅의 레이저 침탄에서 탄소 포텐셜에 따른 침입 거동)

  • Lee, Byunghyun;Kim, Taewoo;Hong, Eunpyo;Kim, Seonghoon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.282-286
    • /
    • 2021
  • Penetration depth and compressive residual stress of laser-carburized TiZrN coating by thickness of carbon paste were investigated in terms of carbon potential. The carbon paste was covered with a thickness of 1.1 mm using screen printing, and applied to a thickness of 0.4 mm using spin coating, and laser carburization was performed under the same conditions. As the thickness of carbon paste increased, the diffraction pattern of the laser-carburized TiZrN coating shifted to a lower angle, indicating solid solution strengthening and lattice distortion. For microstructure analysis using TEM, the defects and carbon concentration of the laser-carburized TiZrN coating increased as the carbon paste was thicker. It indicated that the variation of the carbon potential corresponds to the change in the paste thickness. In XPS depth profile analysis, high concentration of carbon and formation of carbide were observed in laser-carburized TiZrN coating with thick carbon paste. It revealed that the carbon concentration on the surface and carbon potential were changed by the thickness control of carbon paste. The compressive residual stress increased from 3.67 GPa to 4.58 GPa by the variation of carbon concentration.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

The Electronic Structure of Carbon Nanotubes with Finite Length : Tight Binding Theory

  • Moon, Won-Ha;Kim, Won-Woo;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • The electronic properties of Carbon Nanotube(CNT) are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in CNT for the carbon nano-scale device is presented. To Calculate the electronic properties of CNT, Empirical potential method (the extended Brenner potential for C-Si-H) for carbon and Tight Binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6,6) armchair CNT have the ranges between 0.3 eV and 2.5 eV. Also, our results are in agreements with the result of the other computational techniques.

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

A study on Electronic properties of finite length effect in Carbon nanotubes for Carbon Nanoscale device : Tight binding theory (나노디바이스를 위한 탄소 나노튜브의 유한길이에 따른 전기적 특성 연구 : Tight binding 이론)

  • 문원하;강진철;황호정
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.103-106
    • /
    • 2000
  • The electronic properties of carbon nanotube are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in carbon nanotube for cabon nanoscale device is presented. To calculate the electronic properties of carbon nanotube, Empirical potential method (Brenner' hydrocarbon potential) for carbon and Tight binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6, 6) armchair carbon nanotube have the ranges between 0.3 eV and 2.5 eV. Also, our results were compared with the results of the other computational techniques. As that result, our results are very well united.

  • PDF

Molecular Dynamics Study on the Behavior of a Carbon Nanotube (분자동역학을 이용한 탄소나노튜브의 거동 연구)

  • Huh, J.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.348-351
    • /
    • 2007
  • Simulations of the buckling behavior of a single wall carbon nanotube(SWCNT) was carried out using molecular dynamics simulation. Molecular dynamics simulations were done with 1fs of time step. Tersoff's potential function was used as the interatomic potential function since it has been proved to be reliable to describe the C-C bonds in carbon nanotubes. Compressive force was applied by moving the top end of the nanotube at a constant velocity. Buckling behavior under compressive load was observed for (15,15) armchair SWCNTs with 2nm of diameter and 24.9nm of length. Buckling load and critical strain is obtained from the MD simulation. Deformation occurred on the top region of the CNT because of fast downward velocity.

  • PDF