• 제목/요약/키워드: Carbon phenolic composite

검색결과 76건 처리시간 0.02초

탄소/페놀 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구 (On the Mechanical and Thermal Properties of Carbon/Phenolic Interply Hybrid Composite)

  • 신승준;박종규;강태진;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical and thermal properties of spun carbon fabric/continuous carbon fabric interplay hybrid composite materials have been studied. The properties of the hybrid composites are compared with those of the continuous carbon fabric/phenolic composites and spun carbon fabric /phenolic composites. Through hybridization, tensile strength and flexural strength of hybrid composites were increased by about 17%, and 10%, respectively compared with spun carbon composites. The thermal conductivity of the hybrid composite is lower approximately 4~6% along the direction parallel to the laminar plane than that of the continuous carbon/phenolic composite.

  • PDF

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

Preparation of Composite Adsorbents by Activation of Water Plant Sludge and Phenolic Resin Mixtures

  • Myung, Heung-Sik;Kim, Dong-Pyo
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.154-157
    • /
    • 2001
  • Composite adsorbents were prepared by mixing water plant sludge with phenolic resin having the ratio of 1 : 1, 1 : 2, and 1 : 3 respectively, curing from $100^{\circ}C$ to $170^{\circ}C$ under $N_2$ atmosphere, and then activating with $N_2$ at $700^{\circ}C$. Thermal property, specific surface area and morphology of the composite adsorbents as well as their precursors were measured by TGA, BET and SEM respectively. Removal efficiency of the composite adsorbents to ${NH_4}^+$ and TOC was compared with those of commercial zeolite and activated carbon. The adsorbents presented very promising TOC removal efficiency of 98%, which was identical level to that of commercial activated carbon while they displayed removal efficiency, only 32%, of ${NH_4}^+$. Therefore, this composite adsorbent considered as the alternative material of commercial activated carbon, used as an expensive removal agent of organic substances and THM in water treatment plant and it also suggested a possibility of practical application in other processes.

  • PDF

스펀 탄소/페놀 복합재의 열전도도 예측 (Prediction of Thermal Conductivity of Spun Carbon/Phenolic Composites)

  • 서부호;조영준;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.48-51
    • /
    • 2002
  • This paper predicted the thermal conductivity of spun carbon/phenolic composites by the thermal resistance method. This method uses the analogy between the diffusion of heat and electrical charge. To verify the theoretical predictions, the thermal conductivity of spun carbon/phenolic composites was examined experimentally. The reported thermal conductivities of graphite/epoxy composite of a eight harness satin laminate was used of the comparison with the prediction values of the model and it was noticed that a good agreement has been found.

  • PDF

Carbon/Phenolic 내열 복합재료의 기계적 특성 (Mechanical Properties of Carbon/Phenolic Ablative Composites)

  • 김평완;홍순형;김연철;예병한;정발
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

하이브리드 복합재료 저널 베어링의 개발 (Development of the Hybrid Composite Journal Bearing)

  • 김성수;박동창;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2004
  • In this study, a hybrid composite journal bearing composed of carbon fiber reinforced phenolic composite liner and metal backing was manufactured to solve the seizure problem of metallic journal bearing materials because the carbon fiber has self-lubricating ability and the phenolic resin has thermal resistance characteristics. To estimate the wear resistance of carbon fiber phenolic composite, wear tests were performed at several pressures and velocities. The oil absorption characteristics, coefficient of thermal expansion, strength and stiffness of the composite were also tested. Using the measured stiffness values, the thermal residual stresses in the composite were calculated to check the reliability of the composite journal bearing.

  • PDF

레이저 섬광법을 이용한 Carbon/Phenolic 및 Silica/Phenolic 내열복합재료의 열전도도 분석 (Analysis of Thermal Conductivities of Carbon/Phenolic and Silica/Phenolic Ablative Composites by Laser Pulse Method)

  • 김희영;김평완;홍순형;김연철;예병한;정발
    • Composites Research
    • /
    • 제12권3호
    • /
    • pp.75-83
    • /
    • 1999
  • Carbon/Phenolic 및 silica/phenolic 내열 복합재료의 강화재의 종류와 적층방향에 따른 비열, 열확산 계수, 열전도도를 분석하였다. Carbon/Phenolic 및 silica/phenolic 복합재료의 비열은 시차 주사 열량법을 이용하여 측정하였으며, 열확산계수는 레이저 섬광법을 이용하여 laminar와 평행방향과 laminar와 직교방향으로 측정하였다. Carbon/Phenolic 및 silica/phenolic 복합재료의 열확산계수는 온도가 증가함에 따라 감소하였다. Carbon/Phenolic 및 silica/phenolic 복합재료의 열전도도를 밀도, 열확산계수 및 비열을 이용하여 계산하였다. 열전도도는 온도가 증가함에 따라 증가하였으며, carbon/Phenolic의 경우 laminar와 평행방향의 열전도도가 laminar와 직교방향의 열전도도보다 2배 높은 이방성을 나타내었으며 이는 carbon 섬유의 열전도도 이방성 때문으로 해석되었다. 이차원 섬유강화 복합재료의 열전도도를 기지와 강화재의 열전도도와 부피분율을 이용하여 해석하였다. Carbon/Phenolic 및 silica/phenolic 복합재료의 열전도도를 적층방향에 따라 강화재와 기지의 열전도도를 이용하여 해석하여 carbon 섬유와 silica 섬유의 열전도도를 계산하였다. 계산된 섬유의 열전도도와 기지의 열전도도로부터 섬유의 부피분율에 따른 복합재료의 상온열전도도를 예측할 수 있었다.

  • PDF