• Title/Summary/Keyword: Carbon per capita

Search Result 28, Processing Time 0.024 seconds

Carbon dioxide emissions, GDP per capita, industrialization and population: An evidence from Rwanda

  • Asumadu-Sarkodie, Samuel;Owusu, Phebe Asantewaa
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.116-124
    • /
    • 2017
  • The study makes an attempt to investigate the causal nexus between carbon dioxide emissions, GDP per capita, industrialization and population with an evidence from Rwanda by employing a time series data spanning from 1965 to 2011 using the autoregressive distributed lag model. Evidence from the study shows that carbon dioxide emissions, GDP per capita, industrialization and population are co-integrated and have a long-run equilibrium relationship. Evidence from the Granger-causality shows a unidirectional causality running from industrialization to GDP per capita, population to carbon dioxide emissions, population to GDP per capita and population to industrialization. Evidence from the long-run elasticities has policy implications for Rwanda; a 1% increase in GDP per capita will decrease carbon dioxide emissions by 1.45%, while a 1% increase in industrialization will increase carbon dioxide emissions by 1.64% in the long-run. Increasing economic growth in Rwanda will therefore reduce environmental pollution in the long-run which appears to support the validity of the environmental Kuznets curve hypothesis. However, industrialization leads to more emissions of carbon dioxide, which reduces environment, health and air quality. It is noteworthy that the Rwandan Government promotes sustainable industrialization, which improves the use of clean and environmentally sound raw materials, industrial process and technologies.

Appilication of a Green City Index as a Green Space Planning Index for the Low-Carbon Green City of Gangneung-si

  • Cho, Su-Hyun;Jo, Hyun-Ju
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1381-1387
    • /
    • 2016
  • This study aims to establish baseline data for sustainable monitoring by applying the green city index (GCI), which is set up to evaluate the city level, to the city of Gangneung-si, which was designated as a pilot city for the Low-carbon Green Growth City project by the Ministry of Land, Infrastructure, and Transportation. The GCI was applied in the framework of European systems, while considering the social and economic status of Korea. Indicators from 7 areas-$CO_2$, energy, building, transportation, water, waste, and quality of atmosphere were analyzed, except for qualitative indicators. Results indicate that total $CO_2$ emissions were 30.8 tons per capita, or 2.2 tons per one million units of real GDP. The total final energy consumption was 0.231 TOE/capita, or 0.317 TOE per one million units of real GDP. The percentage of total energy derived from renewable resources was 0.41% and energy consumption by the building was $433.5Mwh/1,000m^2$. The total percentage of the working population travelling to work daily by public transportation (limited to bus) was 19%. Further, the total annual water consumption was $99m^3/capita$, and the water lost in the water distribution system was $0.057m^3/capita/day$. The total annual waste collected was 0.0077 ton per capita, The annual mean emission were 0.014 ppm/day for $NO_2$, 0.005 ppm/day for $SO_2$, and 0.019 ppm/day for $O_3$. The annual mean for PM10 emissions was $39{\mu}g/m^3/day$.

Random Coefficient Models for Environmental Kuznets Curve Hypothesis in Seoul Metropolitan Region (확률계수모형을 이용한 수도권지역의 환경쿠즈네츠가설에 관한 재고찰)

  • Kim, Ji Uk
    • Environmental and Resource Economics Review
    • /
    • v.11 no.3
    • /
    • pp.377-396
    • /
    • 2002
  • This paper investigates whether an inverted U relationship between pollution and economic development could be found in the Seoul metropolitan region using a panel data for the period of 1985~1999. We uses a model with a more flexible random coefficients specification which allows for a greater degree of regional heterogeneity. The emissions of sulfur dioxidetotal($SO_2$), suspended particulates(TSP), nitrogen dioxide($NO_2$), and carbon monoxide(CO) were selected as four major pollutants. We found that the emissions of these pollutants per capita except sulfur dioxidetotal exhibited inverted U shapes with per capita gross regional domestic product (GRDP). We also noted that the turning points for Seoul metropolitan region occured at a range of incomes, from $3,000 to $5,000 per capita.

  • PDF

Do Industry 4.0 & Technology Affect Carbon Emission: Analyse with the STIRPAT Model?

  • Asha SHARMA
    • Fourth Industrial Review
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2023
  • Purpose - The main purpose of the paper is to examine the variables affecting carbon emissions in different nations around the world. Research design, data, and methodology - To measure its impact on carbon emissions, secondary data has data of the top 50 Countries have been taken. The stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model have been used to quantify the factors that affect carbon emissions. A modified version using Industry 4.0 and region in fundamental STIRPAT model has been applied with the ordinary least square approach. The outcome has been measured using both the basic and extended STIRPAT models. Result - Technology found a positive determinant as well as statistically significant at the alpha level of 0.001models indicating that technological innovation helps reduce carbon emissions. In total, 4 models have been derived to test the best fit and find the highest explaining capacity of variance. Model 3 is found best fit in explanatory power with the highest adjusted R2 (97.95%). Conclusion - It can be concluded that the selected explanatory variables population and Industry 4.0 are found important indicators and causal factors for carbon emission and found constant with all four models for total CO2 and Co2 per capita.

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe (유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석)

  • Yoon, Kyungsoo;Hong, Won Jun
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.165-204
    • /
    • 2022
  • This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.

CO2 Emission, Energy Consumption and Economic Development: A Case of Bangladesh

  • Islam, Md. Zahidul;Ahmed, Zaima;Saifullah, Md. Khaled;Huda, Syed Nayeemul;Al-Islam, Shamil M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.4 no.4
    • /
    • pp.61-66
    • /
    • 2017
  • Environmental awareness and its relation to the development of economy has garnered increased attention in recent years. Researchers, over the years, have argued that sustainable development warrants for minimizing environmental degradation since one depends on the other. This study analyzes the relationship between environmental degradation (carbon emission taken as proxy for degradation), economic growth, total energy consumption and industrial production index growth in Bangladesh from year 1998 to 2013. This study uses Vector Autoregression (VAR) Model and variance decomposition of VAR to analyze the effect of these variables on carbon emission and vice-versa. The findings of VAR model suggest that industrial production and GDP per capita has significant relationship with carbon emission. Further analysis through variance decomposition shows carbon emission has consistent impact on industrial production over time, whereas, industrial production has high impact on emission in the short run which fades in the long run which is consistent with Environmental Kuznets Curve (EKC) hypothesis. Carbon emission rising along with GDP per capita and at the same time having low impact in the long run on industrial index indicates there may be other sources of pollution introduced with the rise in income of the economy over time.

The Cement Industry in Ethiopia

  • Mulatu, Dure;Habte, Lulit;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.68-73
    • /
    • 2018
  • The cement industry is one of the rapidly growing industry in Ethiopia. The average per capita cement consumption of the country has increased from 39kg to 62kg. However, this is still way below than the global average per capita consumption of 500kg. The Ethiopian government is planning to expand its cement industry by upgrading the current cement plants and also opening of new cement plants in order to meet the future demand of the country. Currently, the number of cement plants in Ethiopia has reached to 20. By the year 2025, per capita cement consumption is expected to increase to 179kg. Recently, Ethiopia has become one of Africa's largest market for the cement industry. In addition, Ethiopia has become the major exporter of cement in the Sub-Saharan African region. The Ethiopian cement industry is highly dependent on the use of imported energy sources for its production. This situation has a significant amount of impact on the high production costs of the industry. This paper will try to review the history, production, available resources, the technologies and energy use of the Ethiopian cement industry.

Environmental Damage Theory Applicable to Kenya

  • ONYANGO, James;KIANO, Elvis;SAINA, Ernest
    • Asian Journal of Business Environment
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 2021
  • Purpose: This study seeks to establish the environmental damage theory applicable to Kenya. The analysis is based on annual data drawn from World Bank on carbon dioxide emissions (CO2e) and gross domestic product per capita (GDPPC) for Kenya spanning 1963 to 2017. Research Methodology: The study adopts explanatory research design and autoregressive distributed lag model for analysis. Results: The results revealed a coefficient of -0.017 for GDPPC and 0.004 for GDPPC squared indicating that economic growth has negative effect on CO2e in the initial stages of growth but positive effect in the high growth regime with the marginal effect being higher in the initial growth regime. The findings suggest a U-shaped relationship consistent with Brundtland Curve Hypothesis (BCH). Conclusions: The findings emphasize the need for sustainable development path that enables present generations to meet own needs without compromising the capacity of future generations to meet their own. Sustainable development may include, investment in renewable energies like wind, solar and adoption of energy efficient technologies in production and manufacturing. The study concludes that BCH is applicable to Kenya and that developing affordable and effective mechanisms to boost sustainable development implementation is necessary to decrease the anthropogenic impact in the environment without any attendant reduction in the economic growth.

Sustainable energy action plans of medium-sized municipalities in north Greece

  • Lymperopoulos, Konstantinos A.;Botsaris, Pantelis N.;Angelakoglou, Komninos;Gaidajis, Georgios
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.11-30
    • /
    • 2015
  • The covenant of Mayors initiative includes the commitment of the municipalities-signatories to reduce voluntarily the greenhouse gas emissions over 20--- by 2020 within their boundaries and obligates them to develop and submit an energy consumption analysis and a sustainable energy action plan within a year from the adhesion. The present paper discusses the energy profile of three medium-sized north-eastern Greek Municipalities (Kavala-MoK, Alexandroupolis-MoA, Drama-MoD) through the analysis of their municipal energy balance. The results of the total final energy consumption per capita include 14.10MWh/capita, 14.24MWh/capita and 12.91MWh/capita for MoK, MoA and MoD respectively. The analysis highlighted the increased energy consumption of the private sectors, namely residential and tertiary building sand private transport. The assessment of the municipalities' energy profiles along with examination of national regulations and action plans and investigation of best available practices within the Covenant of Mayors shaped the development of the sustainable energy action plans of the examined municipalities that is presented in this paper. The proposed pathway towards low-carbon municipalities can be considered a representative case study and a starting point for other municipalities with similar characteristics.

Nuclear energy, economic growth and CO2 emissions in Pakistan: Evidence from extended STRIPAT model

  • Muhammad Yousaf Raza;Songlin Tang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2480-2488
    • /
    • 2024
  • Pakistan is a developing country whose maximum amount of mixed energy is provided by electricity, oil, coal, and gas. The study objective is to analyze the six major social factors to describe the significance of nuclear energy and CO2 emissions at the decisive point coming from income, trade, energy, and urbanization. This study has tried to analyze the impact of different factors (i.e., fossil energy, GDP per capita, overall population, urban population, and merchandise trade) on Pakistan's CO2 emissions using the extended STRIPAT model from 1986 to 2021. Ridge regression has been applied to analyze the parameters due to the multicollinearity problem in the data. The results show that (i) all the factors show significant results on carbon emissions; (ii) population and energy factors are the huge contributors to raising CO2 emissions by 0.15% and 0.16%; however, merchandise and GDP per capita are the least contributing factors by 0.12% and 0.13% due to import/export and income level in Pakistan, and (iii) nuclear energy and substitute overall show a prominent and growing impact on CO2 emissions by 0.16% and 0.15% in Pakistan. Finally, empirical results have wider applications for energy-saving, energy substitution, capital investment, and CO2 emissions mitigation policies in developing countries. Moreover, by investigating renewable energy technologies and renewable energy sources, insights are provided on future CO2 emissions reduction.