• Title/Summary/Keyword: Carbon nanotube probe

Search Result 49, Processing Time 0.034 seconds

The Length Control of Carbon Nanotube using Electrochemical Etching (전해에칭을 이용한 탄소나노튜브의 길이 제어)

  • 이준석;권순근;곽윤근;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.167-171
    • /
    • 2004
  • In this paper, we proposed a new method to control the length of carbon nanotube using electrochemical etching. We made a nano probe that was composed of the tungsten tip and multi-wall carbon nanotube. The nano probe was placed on the nano stage and the carbon nanotube on the nano probe was etched in the electrolyte solution with the applied voltage. The overall procedures were done under optical microscope and can be monitored. We can obtain a nano probe with proper length through this procedure.

Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application (생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출)

  • Kwon, Soon-Geun;Park, Hyo-Jun;Lee, Hyung-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

Manipulation of Carbon Nanotube Tip Using Focused Ion Beam (집속이온빔을 이용한 탄소나노튜브 팁의 조작)

  • Yoon, Yeo-Hwan;Park, June-Ki;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.122-127
    • /
    • 2006
  • This paper reports on the development of carbon nanotube tip modified with focused ion beam(FIB). We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a metal-coated canning Probe Microscope (SPM) tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip was aligned toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for SPM.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Using Focus Ion Beam Carbon Nanotube Tip Manipulation (Focus Ion Beam을 이용한 탄소나노튜브 팁의 조작)

  • Yoon Y.H.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.461-462
    • /
    • 2006
  • This paper reports on the development of a scanning probe microscopy(SPM) tip with caborn nanotubes. We used an electric field which causes dielectrophoresis(DEP), to align and deposit CNTs on a metal-coated SPM tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip align toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for scanning probe microscopy.

  • PDF

Single Wall Carbon Nanotube Films Produced by Arc Discharge (아크 방전법으로 성장된 대면적 단일벽 탄소나노튜브 필름)

  • Kang, Young-Jin;Oh, Dong-Hoon;Song, Hye-Jin;Jung, Jin-Yeun;Jung, Hyuk;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.253-258
    • /
    • 2008
  • A simple method to deposit carbon nanotube films uniformly on large area substrates using an arc discharge method is reported in this paper. The arc discharge method was modified to deposit carbon nanotube films in situ on the substrates. The substrates were scanned several times over the arcing point for a uniform film thickness. Deposition was carried out under variable dc bias conditions at 600 torr of $H_2$ gas. The thickness uniformity of the single-wall carbon nanotube films as characterized by a four-point probe was within 30% deviation. The morphology and crystal quality of the single-wall carbon nanotube film were also characterized by field emission scanning electron microscopy and Raman spectroscopy.