• 제목/요약/키워드: Carbon nano tubes

검색결과 60건 처리시간 0.024초

Simulation of Hydrogen Transport in a Single-walled Carbon Nanotube for Storage Safety

  • Oh, Kyung-Su;Kim, Dong-Hyun;Park, Seung-Ho;Kim, Jung-Soo
    • International Journal of Safety
    • /
    • 제6권1호
    • /
    • pp.16-21
    • /
    • 2007
  • Carbon nanotubes hold much promise as future materials for safe storage of hydrogen. In this paper, hydrogen transport mechanisms in single-walled carbon nano-tubes (SWNTs) for various temperatures and chiral indices were studied using molecular dynamics simulation method. The SWNT models of zigzag (10,0), chiral (10,5) and armchair (10,10) with hydrogen molecules inside were simulated at temperatures ranging from 253K to 373K. Movements of hydrogen molecules ($H_2$) inside a SWNT were analyzed using mean-square displacements and velocity autocorrelation functions.

전도성 형상 기억 폴리우레탄 작동기의 개발 및 응용 (Development and Application of Conducting Shape Memory Polyurethane Actuators)

  • 백일현;정용채;조재환;구남서
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.226-230
    • /
    • 2005
  • 본 논문에서는 MWCNT 분산도가 증가된 새로운 전도성 형상 기억 폴리우레탄을 연구하였고 전기적 특성을 검출하기 위한 실험과 작동 성능을 측정하기 위한 실험들을 수행하였다. 전이온도 이하 범위에서의 온도변화에 따른 저항변화는 거의 없었으며, 시편이 100% 신장됨에 따라 저항값도 100% 증가하였다 (비저항 300% 증가). 작동변위는 페이로드가 증가함에 따라 선형적으로 줄어들었다. 그리고, CSMPU 작동기의 보다 세부적인 특성 및 성능을 알기 위해서는 더 많은 연구와 실험이 필요하다.

  • PDF

염료감응형 태양전지의 상대전극 재료로서 탄소나노튜브의 전기화학적 특성 (Electrochemical Properties of Carbon Nano-tube as the Counter Electrode of Dye-sensitized solar cell)

  • 김현주;이동윤;구보근;이원재;송재성;이대열
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1090-1094
    • /
    • 2004
  • Studies on porous oxide electrode, dye and electrolyte for dye-sensitized solar cells have been intensively carried out until now. However, counter electrode have not been much studied so far. Accordingly, it is needed to investigate new counter electrode materials with superior catalyst property and to substitute for Pt electrode. In this case, carbon nano-tubes (CNTs) are one of alternatives for counter electrodes as following merits: low resistivity, excellent electron emission property, large surface area and low cost due to development of mass production technique. Such advantages gave us to select multiwalled CNTs (MWCNT) as counter electrode for dye-sensitized solar cell. Also, cyclic voltammetry and impedance spectroscopy were used to investigate electrochemical properties of both CNT electrode and Pt electrode. It was found that sheet resistance of CNT electrode was similar to that of Pt electrode, also, electrochemical properties of CNT electrode was superior to that of Pt electrode on the basis on the measurement of CV and impedance spectrum. It was found that CNT is likely to be a very promising electrode material for dye solar cells.

열처리를 통한 금 나노입자의 크기 제어와 일벽 탄소나노튜브의 합성 촉매로의 이용 (Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth)

  • 이승환;정구환
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.737-744
    • /
    • 2013
  • We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

기저판의 탄성에 따른 유연촉각센서의 성능변화 연구 (Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness)

  • 김송호;김호찬;이인환
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.104-109
    • /
    • 2021
  • Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.

B-stage 레진 필름의 카본나노튜브 분산도 평가 및 제조공정 최적화 (Carbon Nano Tube Dispersion Evaluation in B-stage Resin Films)

  • 오영석;박태훈;변준형;이진우;김병선;조치룡
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.353-357
    • /
    • 2016
  • B-stage 레진 필름에 탄소나노튜브(CNT) 등을 균일하게 분포시킨 뒤에 기타의 보강섬유 층과 함께 여러 겹으로 적층하여 하이브리드 형태의 복합재료를 만드는 방법은 유용하다. 본 연구에서는 CNT가 포함된 에폭시 레진으로부터 shear mixing 및 Three-roll mill 공정을 이용하여 B-stage 레진 필름을 제작하였다. 두 공정을 통해 형성된 CNT/레진 복합재 필름의분산도를 파단면의 SEM 관찰을통해분석하였다. 보다 효율적인 공정을 위해 Calendering pass 횟수에 따른 분산도를 평가하였다. Pass의 횟수에 따른 샘플을 제조하고 CNT 분산도는 SEM 이미지를 통해 확인하고, 전기 전도도 측정을 통해 분석하였다. 추가적으로 gap mode, force mode를 통해 제작한 각각의 샘플의 전기 전도도를 측정하여 CNT 분산도를 분석하였고 이를 통해 최적공정을 도출하였다.

전도성 형상기억폴리우레탄 작동기의 개발 및 응용 (Development and Application of Conducting Shape Memory Polyurethane Actuators)

  • 백일현;구남서;정용채;조재환
    • 한국항공우주학회지
    • /
    • 제34권1호
    • /
    • pp.56-64
    • /
    • 2006
  • 본 논문에서는 전도성 형상기억폴리우레탄 (CSMPU)의 개발과 응용 방법이 연구되었다. 일반적인 형상기억폴리우레탄이 외부 열원에 의해 작동되어 온 반면에, 2004년에 소개된 전도성 형상기억폴리우레탄은 전력에 의해 작동되었다. 전도성 형상기억폴리우레탄 작동기는 일반적인 형상기억폴리우레탄에 카본 나노 튜브를 첨가함으로써 제작되었다. 2004년 연구에서 제작된 전도성 형상기억폴리우레탄이 지닌 핵심 문제점은 카본 나노 튜브의 낮은 분산도였다. 이 논문에서는 분산 문제 해결을 시도하였으며, 일련의 정교한 작업을 통해 향상된 전기적 특성을 지닌 전도성 형상기억폴리우레탄 작동기를 개발하였다. 그리고 개발된 전도성 형상기억폴리우레탄 작동기의 작동 성능을 측정 및 평가하였으며, 초소형비행체 조종면의 제어 실험을 통하여 응용 가능성을 검토하였다.

열화손상이 발생된 전도성시멘트모르타르의 미세구조 특성 (Microstructure Characteristics of Conductive Cement Mortar with Deterioration Damage)

  • 김영민;이건철;윤현도;권현우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2021
  • The pore distribution of the cement mortar mixed with carbon nanotubes was found to have a large number of pores at (370~80)㎛, and the distribution ratio was larger as the carbon nanotubes were mixed. However, the pores with a fine particle diameter of (10-0.5) ㎛ were found to be larger as the carbon nanotubes were incorporated. However, the distribution of pores of the test specimens of conductive cement mortar with deterioration damage was found to be distributed in a number of particle diameters of (500 to 100) ㎛ and (10 to 0.5) ㎛. It is judged that the particle diameter of the internal pores increased due to the damage. However, as the mixing ratio of the test specimen with carbon nanotubes increased, the distribution of voids was relatively lower than that of plain, and it was judged to have excellent resistance to deterioration damage.

  • PDF

Impact and post-impact of ring supports: Eigenfrequency response at nano-scale

  • Madiha Ghamkhar;MohamedA. Khadimallah;Muzamal Hussain;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, frequencies of zigzag structure of carbon nanotubes isinvestigated based on Donnell shell theory. These tubes are wrapped with the ring supports in the axial direction. The fundamental frequency curves displayed in article show the dependence of vibrations attributes to zigzag single walled carbon nanotubes. Various zigzag indices are introduced against the variation of length to predict the vibration. Also, the influence of ring supports is sketched with proposed structure for frequency analysis. The frequencies of zigzag tube decreases as the length increases. It is observed that the frequencies decreases with ring support and have higher frequencies without ring. The problem is formulated using Partial Differential Equation. Three expressions of modal deformation displacement functions is used for the elimination of temporal variation to form the solution in the eigen from. For the stability of present study the results are compared with experimentally and numerically in the open text.