• Title/Summary/Keyword: Carbon monoxide conversion

Search Result 72, Processing Time 0.022 seconds

Numerical Analysis of Effective Turbocharger and Baffle on Flow Field in Warm-up Catalyst for Diesel Vehicles (디젤자동차용 웜업촉매 내의 유동장에 미치는 터보차저 및 배플의 영향에 관한 수치해석)

  • Choi, Byung-Chul;Juhng, Woo-Nam;Kang, Chang-Hyuk;Wi, Dae-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • Diesel vehicle is growing in importance in light-duty sector as a way of reducing greenhouse gases due to improved fuel economy. Carbon monoxide, gas-phase hydrocarbon and organic fraction of diesel particulates can be oxidized to harmless products using a diesel warm-up catalyst (WCC). This study investigated the effect of a turbocharger and a baffle on flow fields and temperature distributions in the WCC for Diesel vehicles by a numerical analysis. In the case of the WCC with the turbocharger, velocity vectors and temperatures of inlet of the WCC have the relatively homogeneous distributions by the swirl generated from the turbocharger. Velocity vectors and temperatures of inlet of the WCC with the turbocharger and the baffle have the improved distributions in homogeneity compared with the case of the WCC without the baffle. The homogeneous flow field and the temperature distribution in the WCC may contribute to improve the conversion performance of the catalysts.

Catalytic Detoxication of Coal Combustion Gases (연탄 연소가스의 촉매제독에 관한 연구)

  • Tuwon Chang;Young Sun Uh;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.656-663
    • /
    • 1985
  • A catalytic conversion of carbon monoxide has been studied in a coal combustion system. Three different catalysts were prepared by impregnating 0.2% platinum on three different types of supports, ${\gamma}-Al_2O_3$ pellets, ceramic foam and honeycomb. These catalysts have shown an excellent initial activities in the coal combustion system, but they were rapidly deactivated in repeated uses. Among these catalysts ceramic foam has shown to be better than others both in activities and durabilities. The main cause of deactivation seems to be ascribed to poisoning by zinc metal and sulfur compounds and to decrease in platinum surface area by sintering.

  • PDF

Honeycomb-structured Fe2O3 Catalysts for Low-temperature CO Oxidation (산화철 허니컴 구조 촉매를 활용한 일산화탄소 저온 산화반응 연구)

  • Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.151-154
    • /
    • 2019
  • We report the effective fabrication processes for more practical monolith catalysts consisting of washcoated alumina on a cordierite honeycomb monolith (CHM) and iron oxides nanoparticles in the alumina prepared by a simple dry coating method. It is confirmed that iron oxide nanoparticles were well deposited into the mesopore of washcoated alumina which is formed on the corner wall of honeycomb channel, and the effect of annealing temperature was evaluated for carbon monoxide oxidation catalysts. $Fe_2O_3/{\gamma}-Al_2O_3/CHM$ catalysts annealed at $350^{\circ}C$ exhibited the most enhanced catalytic activity, 100% conversion efficiency at more than $200^{\circ}C$ operating temperature.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production (에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석)

  • Kim, Kyoung-Suk;Park, Chan-Hyun;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.243-247
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by ethylene glycol steam reforming. Various reaction conditions of temperatures(300~1,600 K), feed compositions(steam/carbon= 0.5~4.5), and pressures(1~30 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 500 K. An increase of steam to carbon ratio(S/C) in feed mixture over 1.0 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

Investigation on CO Adsorption and Catalytic Oxidation of Commercial Impregnated Activated Carbons (상용 첨착활성탄의 일산화탄소 흡착성능 및 촉매산화반응 연구)

  • Ko, Sangwon;Kim, Dae Han;Kim, Young Dok;Park, Duckshin;Jeong, Wootae;Lee, Duck Hee;Lee, Jae-Young;Kwon, Soon-Bark
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.513-517
    • /
    • 2013
  • We investigated the properties of impregnated activated carbons, a commercial adsorbent for the individual protection equipment, and examined CO adsorption and oxidation to $CO_2$. The surface area, pore volume and pore size were measured for four commercial samples using Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET/BJH), and atomic compositions of the sample surface were analyzed based on SEM/EDS and XPS. Impregnated activated carbons containing Mn and Cu for fire showed the catalytic CO oxidation to $CO_2$ with a high catalytic activity (up to 99% $CO_2$ yield), followed by the CO adsorption at an initial reaction time. On the other hand, C: for chemical biologial and radiological (CBR) samples, not including Mn, showed a lower CO conversion to $CO_2$ (up to 60% yield) compared to that of fire samples. It was also found that a heat-treated activated carbon has a higher removal capacity both for CO and $CO_2$ at room temperature than that of untreated carbon, which was probably due to the impurity removal in pores resulted in a detection-delay about 30 min.

Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide (페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응)

  • Moon, Haeng-Chul;Sun, Chang-Bong;Lee, Gun-Dae;Ahn, Byuong-Hyun;Lim, Kwon-Taek;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.407-414
    • /
    • 1999
  • We have studied the reduction of NO by CO over perovskite-type oxides prepared by malic and method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In the $LaCoO_3$ type catalyst, the partial substitution of Sr into A site enhanced the catalytic activity on the conversion of NO at less than $350^{\circ}C$. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the partial substitution of Fe or Mn into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. In addition, $La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_3$ mixed with $SnO_2$ or $MnO_2$ showed the synergy effect on the reduction of NO. The introduction of water into reactants feed decreased the catalytic activity but the deactivation was shown to be reversible. The introduction of $SO_2$ into reactants feed also decreased the catalytic activity.

  • PDF

Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports (Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과)

  • Kim, Eun-Jeong;Kang, Dong-Chang;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.121-129
    • /
    • 2017
  • Pd based catalysts were prepared by impregnating palladium precursor using incipient wetness method on $TiO_2$, $Al_2O_3$, $ZrO_2$, and $SiO_2$ and were applied for the selective oxidation of $H_2$ in the presence of CO. Their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$-sorption, temperature programmed desorption of CO (CO-TPD) and (CO+$H_2O$)-TPD, temperature programmed reduction of CO (CO-TPR) and XPS a. The results of CO- and (CO+$H_2O$)-TPD showed the correlation between peak temperature of TPD and catalytic activities for $H_2$ and CO conversion. The $Pd/ZrO_2$ catalyst exhibited the highest conversion of $H_2$. The addition of $H_2O$ vapor promotes the conversion of $H_2$ and CO by inducing easy desorption of CO and $H_2$ in the competitive adsorption of $H_2O$, CO and $H_2$.

Transition Metal Catalyzed Carbonylation of Nitrobenzene for the Synthesis of N,N'-diphenylurea (균일계 전이금속 촉매를 이용한 니트로벤젠의 카르보닐화 반응 연구: N,N'-디페닐우레아 합성)

  • Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1079-1085
    • /
    • 1999
  • An investigation was made of the effect of various transition metal catalysts, ligands, and a promoter on the synthesis of N,N'-diphenylurea(DPU) from nitrobenzene, aniline, and carbon monoxide. Homogeneous Pd and Ni catalysts were found to be highly efficient, giving almost quantitative isolated DPU yields at 100% nitrobenzene conversion. Bidentate ligand, 1,3-bis(diphenylphosphino)proane(dppp) showed much improved activity and significantly different reactivity relative to the usual monodentate $PPh_3$ ligand in the presence of Ni and Pd catalysts. These results were inferred to the effect of the cis coordination of bidentate dppp ligand on the metal. The use of a promoter $Et_4NCl$ was indispensable in the case of $PPh_3$, yet inhibited the reaction if used with dppp. It was possible to reuse the Pd-dppp catalyst system, although the catalytic activity was reduced slowly.

  • PDF