• 제목/요약/키워드: Carbon material

검색결과 3,766건 처리시간 0.031초

탄소나노튜브 페이스트 접합에 의한 탄소계 복합저항체의 전기적 특성 (Electrical Properties of Carbon-Based Hybrid Resistor Bonded with Carbon Nanotube Paste)

  • 이선우;김은민
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.482-487
    • /
    • 2023
  • A carbon-based hybrid resistor was fabricated using carbon nanotube (CNT) paste as an adhesive layer to establish electrically continuous ohmic contacts between CNT sheets and different CNT sheet or copper based metal alloy plates, and its electrical properties were evaluated. CNT sheets were fabricated using vacuum filtration with a CNT solution dispersed in isopropyl alcohol (IPA) solvent. The electrical characteristics of these carbon-based hybrid resistors were investigated. The CNT paste fulfilled the requirements for forming ohmic contacts between CNT sheets and metal alloy plates, which was attributed to the lowest work function difference and excellent wettability at the interface.

갈륨비소-탄소나노튜브 복합체 제작과 전계방출특성 (GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property)

  • 임현철;찬드라세카;장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.199-203
    • /
    • 2010
  • Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at $400^{\circ}C$ under an $N_2/O_2$ atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from $400^{\circ}C$ to $600^{\circ}C$. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under $500^{\circ}C$, while nanowire structures begin to form on the beads above $600^{\circ}C$. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of $2.0\;V/{\mu}m$ was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.

이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성 (Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery)

  • 전도만;나병기;이영우
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.798-803
    • /
    • 2018
  • Si을 리튬이온전지 음극활물질로 사용하기 위해 입도를 $0.5{\mu}m$ 보다 작은 크기로 제어하였고 표면에 탄소를 약 10 nm 두께로 코팅하였다. 그 위에 탄소섬유를 50~150 wt% 양으로 성장시키고 다시 한 번 탄소코팅을 진행하였다. 이렇게 만들어진 Si 합성물질은 전기전도성을 높이기 위한 공정으로 이종 금속을 혼합하였으며 수명 특성을 개선하기 위해 흑연과 복합화하였다. 실험 변수에 따른 재료들의 물리화학적 특성을 XRD, SEM 및 TEM을 사용하여 측정하였고 코인셀을 제조하여 전기화학적 특성을 평가하였다. Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber)보다 Si/PC/CNF/PC가 전체적으로 Si 함량이 줄어 방전용량은 상대적으로 낮게 나타났지만 전지평가에서 중요한 수명특성에서는 좋은 결과를 보여주었다. 0.2 C rate에서 $1512mA\;h\;g^{-1}$의 초기 방전 용량과 78%의 초기 효율을 나타내었고 10 싸이클에서 94%의 용량 보존율을 보여주었다.

APS로 표면 처리한 Fe 나노 입자 촉매를 이용한 CNT의 직경제어 (Diameter Control of Carbon Nanotubes Using Surface Modified Fe Nano-Particle Catalysts with APS)

  • 이선우
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.478-481
    • /
    • 2013
  • Diameter controlled carbon nanotubes (CNTs) were grown using surface modified iron nano-particle catalysts with aminpropyltriethoxysilane (APS). Iron nano-particles were synthesized by thermal decomposition of iron pentacarbonyl-oleic acid complex. Subsequently, APS modification was done using the iron nano-particles synthesized. Agglomeration of the iron nano-particles during the CNT growth process was effectively prevented by the surface modification of nano-particles with the APS. APS plays as a linker material between Fe nano-particles and $SiO_2$ substrate resulting in blocking the migration of nano-particles. APS also formed siliceous material covering the iron nano-particles that prevented the agglomeration of iron nano-particles at the early stages of the CNT growth. Therefore we could obtain the diameter controlled CNTs by blocking agglomeration of the iron nano-particles.

Al2O3 Coating and Filling of Carbon Nanotubes

  • Lee Jong-Soo;Min Byung-Don;Kim Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권4호
    • /
    • pp.1-6
    • /
    • 2003
  • Aluminum oxide ($Al_2O_3$) nanotubes and nanorods were fabricated by coating and filling of multiwalled carbon nanotubes (MWNTs) with atomic-layer deposition (ALD). $Al_2O_3$ material was deposited on the MWNTs at a substrate temperature of $300^{\circ}C$ using trimethylaluminum and distilled water. Transmission electron microscopy, high resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and selected area electron diffraction of the deposited MWNTs revealed that amorphous $Al_2O_3$ material coats the MWNTs conformally and that this material fills the inside of the MWNTs. These illustrate that ALD has an excellent capability to coat and fill any three-dimensional shapes of MWNTs conformally without producing any crystallites.

파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동 (Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces)

  • 홍남식;이상화
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams

  • Tagrara, S.H.;Benachour, Abdelkader;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1259-1277
    • /
    • 2015
  • In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

Microstructural behavior and mechanics of nano-modified cementitious materials

  • Archontas, Nikolaos D.;Pantazopoulou, S.J.
    • Advances in concrete construction
    • /
    • 제3권1호
    • /
    • pp.15-37
    • /
    • 2015
  • Ongoing efforts for improved fracture toughness of engineered cementitious materials address the inherent brittleness of the binding matrix at several different levels of the material's geometric scale through the addition of various types of reinforcing fibers. Crack control is required for crack widths that cover the entire range of the grain size spectrum of the material, and this dictates the requirement of hybrid mixes combining fibers of different size (nano, micro, macro). Use of Carbon Nano-Tubes (CNT) and Carbon Nano-Fibers (CNFs) as additives is meant to extend the crack-control function down to the nanoscale where cracking is believed to initiate. In this paper the implications of enhanced toughness thus attained at the material nanostructure are explored, with reference to the global smeared constitutive properties of the material, through consistent interpretation of the reported experimental evidence regarding the behavior of engineered cementitious products to direct and indirect tension.

스프레이 법으로 제작된 MWCNT 투명전도막의 특성

  • 장경욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.244-244
    • /
    • 2009
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as transparent electrode. Sensor films were fabricated by air spray method using the multi-walled CNTs solution on glass substrates. The film that was sprayed with the MWCNT dispersion for 60 sec, was 300nm thick. And the electric resistivity and the light transmittance rate are $2{\times}10^2{\Omega}cm$ and 60%, respectively.

  • PDF

탄소 니들펀칭 프리폼의 소재조성 및 공정변수에 따른 인장 특성평가와 제작 최적화 (Evaluation of the tensile properties and optimum condition of manufacturing of carbon needle punched perform by material composition and processing parameters)

  • 배준희;이재열;강태진;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2003
  • The effect of punching density and material composition on the tensile properties and optimum condition of manufacturing of carbon needle punched perform was studies. The interlaminar tensile strength were increased but the intralaminar tensile strength were decreased with increasing punching density. In the case of the performs composed of continuous oxi-PAN fabrics, there was a considerable improvement of the interlaminar and intralaminar tensile strength.

  • PDF