• Title/Summary/Keyword: Carbon forestry

Search Result 182, Processing Time 0.024 seconds

Shifting Cultivation Effects on Soil Environment in Upland Watershed of Bangladesh

  • Haque, S.M. Sirajul;Gupta, Sanatan Das;Miah, Sohag
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.179-188
    • /
    • 2014
  • This research reports the effects of shifting cultivation on soil environment collecting samples from 0-5 cm soil depth from five locations viz. at Burburichhara, Maichchari, Longadu, Sukurchhari and Muralipara in Rangamati district of Chittagong Hill Tracts (CHTs). Soil analyses showed that fungal and bacterial population, microbial respiration and active microbial biomass, maximum water holding capacity, conductivity and moisture contents were significantly (at least $p{\leq}0.05$) lower in shifting cultivated soil compared to adjacent mixed tree plantations at all the sites. On an average in soils of 5 different shifting cultivated lands fungal population was $1.33{\times}10^5$ CFU/g dry soil and bacterial population $1.80{\times}10^7$ CFU/g dry soil and in mixed plantations fungal population was $1.70{\times}10^5$ and bacterial population $2.51{\times}10^7$ CFU/g dry soil. Organic matter and exchangeable Ca and Mg contents were significantly (at least $p{\leq}0.05$) lower and bulk density significantly (at least $p{\leq}0.05$) higher in shifting cultivated land in most of the locations compared to adjacent mixed tree plantations. Ratios of microbial respiration and organic carbon as well as active microbial biomass and organic carbon were distinctly lower and pH higher at 3 locations in shifting cultivated soils compared to mixed plantations. Findings of various soil properties, therefore, suggest that shifting cultivation has deteriorating effects on soil environment.

Forest Resources of the Korea Based on National Forest Inventory Data

  • Kim, Dong-Hyuk;Nor, Dae-Kyun;Jeong, Jin-Hyun;Kim, Sung-Ho;Chung, Dong-Jun
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • Forest inventory is a commercial term meaning the preparation of detailed descriptive list of articles with number, quantity and value of each item included. Forest inventory deals with the measurement of trees and stands, the estimation of their volume, growth prediction, biomass, carbon stocks and the description tree characteristics, as well as the land upon which they are growing. National Forest Inventory Center (NFIC) in Korea conducts national forest inventory every 5 years to obtain accurate baseline data for national forest policy. The permanent sample plot data used in were collected by NFI. The objective of this study was to develop methods for quantifying forest resources at national scale based on $5^{th}$ National Forest Inventory (NFI) data in Korea. Forest land area decreased from 6.44 to 6.38 million ha between 1997 and 2007, continuing a slight downward trend in area beginning in the late 1990s. However forest resources of the Korea have continued improving in general condition and quality, as measured by increased average size and volume of trees. Growing-stock volume of the Korea increased from 17 to 123.79 cubic meter per ha between 1976 and 2007. The biomass in Korea was estimated to be 153.81 tons per hectare and carbon stocks in Korea was estimated to be 84.36 tons per hectare by NFI data. This information is important for government officials, public administration, the private business sector, and the researcher. Forest Inventory should be implemented in a way to be able to monitor and assess the forests continuously.

  • PDF

Estimating Litter Carbon Stock and Change on Forest in Gangwon Province from the National Forestry Inventory Data (국가산림자원조사 자료를 활용한 강원도 산림내 낙엽층의 탄소저장량 및 변화량 추정)

  • Lee, Sun Jeoung;Kim, Raehyun;Son, Yeong Mo;Yim, Jong Su
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2017
  • This study was conducted to estimate litter carbon stock change from the National Forest Inventory (NFI) data for national greenhouse gas inventory report. Litter carbon stocks were calculated from the NFI dataset in NFI5 (2008) and NFI6 (2013) in Gangwon province. Total carbon stock change of litter was $0.68{\pm}0.71\;t\;C/ha$ from NFI5 (2008) to NFI6 (2013), however, there was no significant difference between the both dataset at 2008 and 2013 year. Litter carbon stock of coniferous stands was higher than deciduous stands in NFI5 (2008) and NFI6 (2013) (P<0.05). This study was limited to pilot study, so we will assess litter carbon stock using more complete data from NFI systems. It can be used as data sources for national greenhouse gas inventory report on forest sector.

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao;Deng, Yunjin;Wang, Xingna;Li, Qiuzhe;Huang, Yifan;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1280-1290
    • /
    • 2014
  • In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Physiological and degradational characteristics of Armillaria mellea (뽕나무버섯균의 생리적 특성 및 부후특성)

  • Chai, Jung-Ki;Kim, Yoon-Soo;Lee, Kwang-Ho;Kim, Hyun-Ju;Kim, Hyun-Suk;Chai, Young-Woo;Kim, Jong-Soe
    • Journal of Mushroom
    • /
    • v.3 no.1
    • /
    • pp.24-30
    • /
    • 2005
  • To study the cultural characteristics and wood rotting ability of the secondary mycellia of Armillaria mellea, it was cultivated on the various media. The optimal mycelial growth condition was 20~27 and pH 5.0~6.5 on PDB. A. mellea grew well on MEA, PDA and GP. Lactose and mannitol as carbon sources and glutamic acid as nitrogen sources were found to be effective as additives. A. mellea employed in this study have the characteristics of white rot types. Pine and oak wood were selected as candidates for sawdust substrate.

  • PDF

Long-term drought modifies carbon allocation and abscisic acid levels in five forest tree species

  • Umashankar Chandrasekaran;Kunhyo Kim;Siyeon Byeon;Woojin Huh;Ah Reum Han;Young-Sang Lee;Hyun Seok Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.241-249
    • /
    • 2023
  • Background: This study analyzed the drought responses of five forest tree species grown in Korean peninsula, Korean fir Abies koreana (Ak), eastern white pine Pinus strobus (Ps), keyaki Zelkova serrata (Zs), tulip tree Liriodendron tulipifera (Lt), and Japanese elm Ulmus japonica (Uj). Physiological (chlorophyll, root collar diameter [RCD]) and biochemical responses (non-structural carbohydrates, proline, lipid peroxidase and abscisic acid [ABA]) of the plants grown under mild (MD) and severe drought (SD) were compared. Results: In this study, three soil moisture regimes: control (100% precipitation), MD (60% reduction in precipitation) and SD (20% reduction in precipitation) were applied. Soil moisture content showed high water content in control site compared to MD and SD. A decline in RCD was found for Korean fir, keyaki, and tulip plants, with eastern white pine and Japanese elm showing no significant decline to the prolonged drought exposure (both MD and SD). Total chlorophyll showed a significant decline in Korean fir and tulip, with the sugar levels indicating a significant increase in Korean fir and keyaki species under SD compared to control plants. Non-significant decline in sugar level was noted for eastern white pine and Japanese elm. High accumulation of ABA, malondealdehyde and proline was noted in Korean fir, tulip, and keyaki under SD compared to control. Signs of tree mortality was only observed in Korean fir under MD (38%) and SD (43%). Conclusions: The observed findings indicate the drought responses of five tree species. The majority of the morpho-physiological (especially mortality) and biochemical variables assessed in our study indicate superior long-term drought resistance of Ps and Uj compared to the highly sensitive Ak, and moderately sensitive Lt and Zs. The results provided will help species selection for afforestation programs and establishment of sustainable forests, especially of drought-tolerant species, under increased frequency and intensity of spring and summer droughts.

A Study on Conditions for Facilitating Forest Carbon Projects for Greenhouse Gas Reduction: A Forest Management Project Case with E xtended Rotation Age in Private Forests (온실가스 감축을 위한 산림탄소사업의 이행 가능 요건에 관한 연구: 사유림 벌기령 연장형 산림경영사업을 중심으로)

  • Park, Minyoung;YOUN, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.440-452
    • /
    • 2021
  • This study identified and evaluated conditions for continued participation of private forest owners in forest carbon offset programs. The probability of continuing forest carbon offset projects, which delays greenhouse gas emissions by extending harvesting periods, increases with increasing price of carbon offset credits, public recognition of forest value, and education level. Willingness to Accept (WTA) was estimated using a Multiple Bounded Dichotomous Choice Question, which was 17,039 KRW/tCO2 for extending age to 60 years, and 23,070 KRW/tCO2 for 100 years. The following findings aim to promote participation and supply of carbon offset programs in private forests according to the study outcomes. First, introducing policies supporting private forest owners bearing opportunity costs for avoiding greenhouse gas emissions by postponing timber harvest is needed. Second, educational programs for private forest owners whose awareness of and interests in the public value of forest is necessary. Third, although having participated from the beginning of the offset program, finding ways to lead continuous participation of forest owners who are less likely to accept WTA is also necessary.

Investigation into Methods for reducing Greenhouse Gas Emission in Paper Industry with Development of Greenhouse Gas Inventory (온실가스 인벤토리 구축을 통한 제지산업에서 온실가스 절감 방법론 조사)

  • Kim, Dong-Seop;Sung, Yong-Joo;Lee, Joon-Woo;Kim, Se-Bin;Park, Gwan-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • The reduction of greenhouse gas emission currently becomes more urgent task for Korean Industries, especially for the paper industries because of the new regulation based on the low carbon-green growth law. In order to reduce effectively the greenhouse gas emission, the development of greenhouse gas emission inventory has been widely considered as one of the basic processes and has been applied to many industries. In this study, the fundamental schemes and the cases of greenhouse gas inventories were investigated. Especially, the major considering units for paper industries were suggested to develope greenhouse emission inventory of paper industry.

Evaluation of Affecting Factors for Refractory Organics Accumulated in the Lakes (호소의 난분해 물질 축적 영향요인의 평가)

  • Kim, Sungwon;Kim, Geonha;Choi, Euiso
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.720-726
    • /
    • 2006
  • Long-term monitoring results of water qualities at major lakes in Korea showed COD (chemical oxygen demand) concentrations have been increasing while BOD (biochemical oxygen demand) concentrations have been decreasing during last decades. This was mainly due to refractory organic matters have been accumulated in the water body. In this study, the possible causes of COD concentration increase were evaluated. From the statistics, it can be understood that potent pollutant sources including fertilizer consumption, population, livestock, and carbon uptake have increased. Leaching tests were carried out with soils and biomasses sampled at agricultural-forestry area. From the leaching experiments, leachate qualities as a ratio of $COD_{Cr}/BOD$ were in the range of 2.5-5.0, implying that NOM (natural organic matters) discharged from the forestry area was mainly responsible for the COD accumulation. It can be understood from this research that diffuse pollutants from forestry areas should be controlled properly to reduce COD accumulation in the lakes.

Preparation of Activated Carbon from Pine Bark by Steam Activation (소나무 수피로부터 수증기 활성화에 의한 활성탄 제조)

  • 문성필;황의동
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.17-24
    • /
    • 2002
  • Activated carbons were prepared from pine bark by steam activation, and pore structures and specific surface areas were then investigated. Three different types of kilns were used for the activation. When the stationary-vertical-or stationary-horizontal-type kiln was used for the steam activation to prepare an activated carbon from the bark, it was not possible to produce activated carbon having high specific surface areas exceeding 1,000 $m^2/g$. Using bark powder improved the specific surface area, but it was still not high enough. When the rotary-horizontal-type kiln was used for the activation, the activated carbons prepared had high specific surface areas of more than 1,000$m^2/g$, which was similar to a commercial first-grade activated carbon. The activated carbon prepared by the rotary kiln had a wide distribution of pore size ranging from microporous to mesoporous.

  • PDF