• 제목/요약/키워드: Carbon estimation

검색결과 571건 처리시간 0.025초

국내 일부 다중벽탄소나노튜브의 직업노출기준 추정 (Estimation of an Occupational Exposure Limit for Multi-Walled Carbon Nanotubes Manufactured in Korea)

  • 김종범;김경환;최병길;송경석;배귀남
    • 한국환경과학회지
    • /
    • 제25권4호
    • /
    • pp.505-516
    • /
    • 2016
  • With the development of nanotechnology, nanomaterials are used in various fields. Therefore, the interest regarding the safety of nanomaterial use is increasing and much effort is diverted toward establishment of exposure assessment and management methods. Occupational exposure limits (OELs) are effectively used to protect the health of workers in various industrial workplaces. This study aimed to propose an OEL for domestic multi-walled carbon nanotubes (MWCNTs) based on animal inhalation toxicity test. Basic procedure for development of OELs was examined. For OEL estimation, epidemiological study and quantitative risk assessment are generally performed based on toxicity data. In addition, inhalation toxicity data-based no observed adverse effect level (NOAEL) and benchmark dose (BMD) are estimated to obtain the OEL. Three different estimation processes (NEDO in Japan, NIOSH in USA, and Baytubes in Germany) of OELs for carbon nanotubes (CNTs) were intensively reviewed. From the rat inhalation toxicity test for MWCNTs manufactured in Korea, a NOAEL of $0.98mg/m^3$ was derived. Using the simple equation for estimation of OEL suggested by NEDO, the OEL of $142{\mu}g/m^3$ was estimated for the MWCNT manufacturing workplace. Here, we used test rat and Korean human data and adopted 36 as an uncertainty factor. The OEL for MWCNT estimated in this work is higher than those ($2-80{\mu}g/m^3$) suggested by previous investigators. It may be greatly caused by different physicochemical properties of MWCNT and their dispersion method and test rat data. For setting of regulatory OELs in CNT workplaces, further epidemiological studies in addition to animal studies are needed. More advanced technical methods such as CNT dispersion in air and liquid should be also developed.

Estimation of Residual Biomass, PHB, and Nutrient Concentrations by Supplied Amount of Ammonia Solution in Fermentation of Alcaligenes latus

  • Lee, Yong-Woo;Tsuneo Yamane
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.554-561
    • /
    • 1999
  • A novel estimation method was investigated for determining the concentrations of residual biomass, poly-3-hydroxybutyrate (PHB), and main nutrients including carbon and nitrogen sources, phosphate, and mineral ions from the supplied amount of ammonia solution used for a pH-control solution and nitrogen source in a PHB fermentation. The estimation equations for a batch culture and a fed-batch culture were derived from the relationship between the growth rate of residual biomass and the feed rate of the pH-control solution, and then were applied to the batch culture and the fed-batch cultures of Alcaligenes latus. This method was successfully applied to estimate the concentrations of residual biomass, PHB, and nutrients.

  • PDF

2011년 봄 황사시기 제주도 고산에서의 황사와 오염입자의 광흡수 기여도 산정 (Estimation of the Light Absorption Contribution for Asian Dust and Polluted Particles at Gosan, Jeju during the Asian Dust Episode in the Spring 2011)

  • 이시혜;김상우;윤순창
    • 한국대기환경학회지
    • /
    • 제28권4호
    • /
    • pp.411-422
    • /
    • 2012
  • Ground-based in-situ measurements of aerosol optical properties at Gosan climate observatory have been analyzed to investigate the optical contribution of Asian dust and polluted particles on light absorption in springtime 2011. During the Asian dust episode, the contribution of Asian dust particle to aerosol absorption coefficient estimated about 45% at 370 nm and about 23% at 520 nm. Especially, black carbon in dust plume contributes about 48% to aerosol light absorption at 520 nm since the airmass are transported from the Gobi and inner Mongolia deserts, and this airmass comes across the northeastern coast of China, near the Shandong Peninsula. In pollution case, the contributions of dust particle and black carbon to aerosol absorption coefficient estimated about 41% and 11% at 370 nm, respectively. However, pollution case shows the highest light absorption of 48% for brown carbon at 370 nm, which indicates the significantly high mass concentration of organic carbon ($6.3{\pm}2.2{\mu}g\;m^{-3}$) in pollution plume can contribute to the increase of light absorption at near-UV spectral region.

카본 블렉을 함유한 복합재 적층판의 유전율 (Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion)

  • 김진봉;김태욱
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.48-53
    • /
    • 2003
  • 본 논문에서는 카본 블랙의 함유율에 따른 유리섬유/에폭시 직조 복합재료 적층판의 유전율에 대한 실험 및 예측방법에 대한 연구를 수행하였다. 유전율 측정은 5 GHz∼18 GHz의 주파수 영역에서 수행하였으며, 복합재료의 유전율은 카본 블랙의 함유율과 주파수의 함수로 얻을 수 있었다. 카본 블랙의 함유율에 따른 복합재료의 유전율을 모사하는 혼합법칙을 얻기 위한 새로운 방법이 제시되었으며. 이 방법에서는 실험적으로 얻기 어려운 카본 블랙 자체의 유전율도 얻을 수 있다. 혼합법칙으로 계산된 복합재료 유전율 결과는 실험적으로 얻은 유전율을 비교적 잘 모사하는 결과를 얻을 수 있었다.

다양한 온도에서 염소가스 반응에 의해 표면 개질된 SiC의 트라이볼로지 특성평가 (Estimation of Tribological Properties on Surface Modified SiC by Chlorine Gas Reaction at Various Temperatures)

  • 배흥택;정지훈;최현주;임대순
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.515-519
    • /
    • 2009
  • Carbon layers were fabricated on silicon carbide by chlorination reaction at temperatures between $1000^{\circ}C$ and $1500^{\circ}C$ with $Cl_2/H_2$ gas mixtures. The effect of reaction temperature on the micro-structures and tribological behavior of SiC derived carbon layer was investigated. Tribological tests were carried out ball-on-disk type wear tester. Carbon layers were characterized by X-ray diffractometer, Raman spectroscopy and surface profilometer. Both friction coefficients and wear rates were maintained low values at reaction temperature up to $1300^{\circ}C$ but increased suddenly above this temperature. Variation of surface roughness as a function of reaction temperature was dominant factor affecting tribological transition behavior of carbon layer derived from silicon carbide at high temperature.

Estimation of Carbon Storage Using Mean Biomass Density in Korean Forests

  • Li, Xiaodong;Yi, Myong-Jong;Jeong, Mi-Jeong;Son, Yo-Whan;Jin, Guangze;Han, Sang-Sub
    • 한국산림과학회지
    • /
    • 제99권5호
    • /
    • pp.673-681
    • /
    • 2010
  • This study examined the biomass data estimated from different allometric models and calculated the mean aboveground biomass, mean belowground biomass and root/shoot ratio values according to the forest types and age classes. These mean values and the forest inventories in 2009 were used to estimate the aboveground and total biomass carbon storage in different forest types (coniferous, deciduous and mixed forests). The aboveground and total biomass carbon storage for all forest types in Korea were 350.201 Tg C and 436.724 Tg C. Over the past 36 years, plantations by reforestation programs have accounted for more than 70% of the observed carbon storage. The carbon storage in Korean forest biomass was 436.724 Tg C, of which 175.154 Tg C for coniferous forests, 126.772 Tg C for deciduous forests and 134.518 Tg C for mixed forests, comprising approximately 1/20 of the total carbon storage of the East Asian countries. The total carbon storage for the whole forest sector in Korea was 1213.122 Tg C, of which 436.724 Tg C is stored in forest biomass if using the ratio of carbon storage in different pools examined from the United States. Such large carbon storage in Korean forests is due mainly to active plantations growth and management practices.

RS/GIS를 이용한 토지이용변화에 의한 녹지의 이산화탄소 (CO2) 흡착량 분포 추정 (Estimation of Carbon Absorption Distribution by Land Use Changes using RS/GIS Method in Green Land)

  • 나상일;박종화;박진기
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.39-45
    • /
    • 2010
  • Quantification of carbon absorption and understanding the human induced land use changes (LUC) forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by LUC through remote sensing technology. The Landsat imagery four time periods was classified with the hybrid classification method in order to quantify carbon absorption by LUC. Thereafter, for estimating the amount of carbon absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated with the crown width extracted from digital forest cover type map. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC guideline, was used to convert the stand biomass into the amount of carbon absorption. Total carbon absorption has been modeled by taking areal estimates of LUC of four time periods and carbon factors for land use type and standing biomass. Results of this study, through LUC suggests that over a period of construction, 7.10 % of forest and 9.43 % of barren were converted into urban. In the conversion process, there has been a loss of 6.66 t/ha/y (7.94 %) of carbon absorption from the study area.

한국 국립공원 산림생태계의 수목 탄소저장량 평가 (Estimation of Carbon Storage for Trees in Forest Ecosystem in the National Parks of Korea)

  • 이상진;박홍철;박관수;김현숙;이창민;김진원;심규원;최승운
    • 한국환경복원기술학회지
    • /
    • 제25권3호
    • /
    • pp.1-16
    • /
    • 2022
  • The purpose of this study is to quantitatively evaluate the amount of carbon storage for trees in forest ecosystem to support the foundation for carbon neutrality implementation in Korea National Park. It targeted 22 national parks designated and managed as national parks in Korea, and conducted research on forest trees in the terrestrial ecosystem among various natural and ecological carbon sink. The survey and analysis method followed the IPCC guidelines and the National Greenhouse Gas Inventory in Korea. The amount of tree carbon storage in the forest ecosystem of Korea National Park was confirmed to be about 218,505 thousand CO2-ton and the amount of carbon storage per unit area was 570.8 CO2-ton per hectare. Compared to 299.7 CO2-ton per hectare, the average carbon storage per unit area of the entire Korean forest, it was found that about twice as much carbon was stored when assuming the same area. In other words, it means that the tree carbon storage function of the national park is about twice as high as that of the average tree carbon storage function of entire Korean forest. It has great implications in Korea National Park not only provides biodiversity promotion and exploration services as a national protected area, but also performs excellent functions as a carbon sink.

흡입 독성 평가를 위한 다중벽 탄소나노튜브의 에어로졸 발생장치 개발 및 성능 평가 (Development and Performance Evaluation of Aerosol Generator of MWCNTs for Inhalation Toxicology)

  • 이건호;전기수;유일재;안강호
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.231-238
    • /
    • 2013
  • Carbon nanotubes (CNTs) are one of the nanomaterials that were discovered by Iijima in 1991 for the first time. CNTs have long cylindrical and axi-symmetric structures. CNTs are made by rolling graphene sheets. Because of their large length-to-diameter ratio, they are called nanotubes. CNTs are categorized as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) based on the shell structures. CNTs are broadly used in various fields, such as scanning probe microscopy, ultra fine nano balance and medicine, due to their extraordinary thermal conductivity, electrical and mechanical properties. Because long, straight CNTs have the same shape as asbestos, which cause cancer in cells lining the lung, there have been many studies on the effects of MWCNTs on human health that have been conducted. Stable atomization of CNTs is very important for the estimation of inhalation toxicity. In the present study, electro-static assisted axial atomizer (EAAA), which is the instrument that uses MWCNTs and aerosolizes them by transforming the single fiber shape using ultrasonic dispersion and electric field, was invented. EAAA consists of a ultrasonic bath for dispersion of MWCNTs and a particle generator for atomizing single fibers. The performance evaluation was conducted in order to assess the possibilities of 6-hour straight atomization with stability, which is the suggested exposure time in a day for the estimation of inhalation toxicity.

Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei

  • Lee, Sohye;Lee, Dongho;Yoon, Tae Kyung;Salim, Kamariah Abu;Han, Saerom;Yun, Hyeon Min;Yoon, Mihae;Kim, Eunji;Lee, Woo-Kyun;Davies, Stuart James;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • 제38권1호
    • /
    • pp.75-84
    • /
    • 2015
  • Tropical forests play a critical role in mitigating climate change, and therefore, an accurate and precise estimation of tropical forest carbon (C) is needed. However, there are many uncertainties associated with C stock estimation in a tropical forest, mainly due to its large variations in biomass. Hence, we quantified C stocks in an intact lowland mixed dipterocarp forest (MDF) in Brunei, and investigated variations in biomass and topography. Tree, deadwood, and soil C stocks were estimated by using the allometric equation method, the line intersect method, and the sampling method, respectively. Understory vegetation and litter were also sampled. We then analyzed spatial variations in tree and deadwood biomass in relation to topography. The total C stock was 321.4 Mg C $ha^{-1}$, and living biomass, dead organic matter, and soil C stocks accounted for 67%, 11%, and 23%, respectively, of the total. The results reveal that there was a relatively high C stock, even compared to other tropical forests, and that there was no significant relationship between biomass and topography. Our results provide useful reference data and a greater understanding of biomass variations in lowland MDFs, which could be used for greenhouse gas emission-reduction projects.