• 제목/요약/키워드: Carbon dioxide removal

Search Result 201, Processing Time 0.018 seconds

Comparison of Indoor CO2 Removal Capability of Five Foliage Plants by Photosynthesis (다섯가지 관엽식물의 광합성에 의한 실내 이산화탄소 제거능력 비교)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.864-870
    • /
    • 2010
  • This study was conducted to determine the effects of foliage plants on reducing indoor carbon dioxide ($CO_2$). Five foliage plants such as $Hedera$ $helix$ L., $Ficus$ $benjamina$ L., $Pachira$ $aquatica$, $Chamaedorea$ $elegans$, and $Ficus$ $elastica$ were selected and cultivated in two different growth medium (peatmoss and hydroball). Each plant was placed in an airtight chamber and then treated with the combinations of two different $CO_2$ concentrations (500 or 1,000 ppm) and two different light intensities (50 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The change of $CO_2$ concentration (ppm) in the airtight chamber during day and night was measured and then converted into the photosynthetic rate (${\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$). As the results, each foliage plant reduced $CO_2$ level in the airtight chamber for one hour by photosynthesis. $Pachira$ $aquatica$ and $Ficus$ $elastica$ absorbed $CO_2$ more effectively compared to the other plants. The plants exposed to higher $CO_2$ concentration (1,000 ppm) and higher light intensity ($200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed more effective $CO_2$ elimination rate and photosynthetic rate. The plants that have wide leaves and big leaf areas such as $Pachira$ $aquatica$, $Hedera$ $helix$ L.,and $Ficus$ $elastica$ showed higher photosynthetic rate than the other plants that have smaller leaves. Released $CO_2$ concentration by respiration of the plants during the night was very low compared to the absorbed $CO_2$ concentration by photosynthesis during the day. There was no significant difference between peatmoss and hydroball medium on reducing $CO_2$ concentration and increasing photosynthetic rate. In conclusion, this study suggested that foliage plants can effectively eliminate indoor $CO_2$. Optimum environmental control in relation to photosyntheis and usage of right indoor foliage plants having lots of leaves and showing active photosynthesis even under low light intensity like indoor light condition would be required to increase the elimination capacity of indoor $CO_2$.