• Title/Summary/Keyword: Carbon dioxide emission

Search Result 529, Processing Time 0.024 seconds

Seasonal variations of CO2 concentration and flux in vegetation and non-vegetation environments on the Muan tidal flat of Hampyong Bay (함평만 무안 지역 갯벌의 식생 및 비식생 환경에서 이산화탄소 농도와 플럭스의 계절 변동)

  • So, Yoon Hwan;Kang, Dong-hwan;Kwon, Byung Hyuk;Kim, Park Sa
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.257-266
    • /
    • 2019
  • In this study, we selected 6 vegetation sites (reed community) and 6 non-vegetation sites (tidal flat) in the Muan tidal flat of Hampyeong Bay, and observed seasonal changes in carbon dioxide concentration, flux and soil temperature at low tide conditions. The study was conducted to identify the characteristics of seasonal changes in vegetation and non-vegetation areas through the data observed in May 30, August 8, 2012 and January 31, 2013. The average carbon dioxide concentration in the vegetation area was the highest in winter, followed by spring and summer, and the non-vegetation area showed the same concentration change as the vegetation area. The carbon dioxide flux in the vegetation area showed a positive (+) value in both spring and summer, but it was negative (-) in the winter. The average value of carbon dioxide flux was the highest in spring, but it was almost similar to summer, and winter was the lowest negative value. Non-vegetation areas showed positive emission in spring, and negative uptake in summer and winter; mean values were the highest in spring, and the difference between summer and winter was small. In summary of seasonal change characteristics of the research area, the emission of carbon dioxide was dominant in both areas in spring. In summer, carbon dioxide emission was dominant in the vegetation area, and the non-vegetation area was observed to uptake by photosynthesis of phytoplankton, but it was very small. In winter, changes in flux in both areas were very slight.

A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel (가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

Scenario Analysis of Low-Carbon Generation Mix Considering Social Costs (사회적 비용을 고려한 저탄소 전원구성의 시나리오 분석)

  • Park, Jong-Bae;Cho, Young-Tak;Roh, Jae Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • This study organizes scenarios on the power supply and demand plans considering the uncertainties and the portion of distributed energy resources. In analysing the scenarios, it estimates total electricity supply cost in the social aspect, natural gas demand and air pollutants emission including carbon dioxide. Also the analysis is performed to estimate the marginal cost of carbon dioxide reduction for the fuel switching from coal to liquified natural gas. In result, the social cost could be decreased by replacing some portion of renewable energy by LNG-based combined heat and power and delaying the construction of large base-load generators such as coal and nuclear plants. The marginal carbon dioxide reduction cost by fuel switching is in plausible range for fuel switching to be an option for carbon dioxide emission reduction when the social cost is considered.

Calculation of a Diesel Vehicle's Carbon Dioxide Emissions during Haulage Operations in an Underground Mine using GIS (GIS를 이용한 지하광산 디젤 차량의 운반작업 시 탄소배출량 산정)

  • Park, Boyoung;Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.373-382
    • /
    • 2015
  • This study presents a method to calculate carbon dioxide emissions of diesel vehicles operated in an underground mine using Geographic Information Systems (GIS). An underground limestone mine in Korea was selected as the study area. A GIS database was constructed to represent the haulage roads as a 3D vector network. The speed of dump trucks at each haulage road was investigated to determine the carbon dioxide emission factor. The amount of carbon dioxide emissions related to the truck's haulage work could be calculated by considering the carbon dioxide emission factor at each haulage road and the haulage distance determined by GIS-based optimal route analysis. Because diesel vehicles are widely utilized in the mining industry, the method proposed in this study can be used and further improved to calculate the amount of carbon dioxide emissions in mining sites.

A Study on Carbon Footprint and Mitigation for Low Carbon Apple Production using Life Cycle Assessment (전과정평가법을 이용한 사과의 탄소발생량 산정과 저감 연구)

  • Lee, Deog Bae;Jung, Sun Chul;So, Kyu Ho;Kim, Gun Yeob;Jeong, Hyun Cheol
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • Carbon footprint of apple was a sum of $CO_2$ emission in the step of manufacturing waste of agri-materials, and greenhouse gas emission during apple cultivation. Input amount of agri-materials was calculated on 2007 Income reference of Apple by Rural Development Administration. Emission factor of each agri- materials was based on domestic data and Ecoinvent data. $N_2O$ emission factor was based on 1996 IPCC guideline. Carbon dioxide was emitted 0.64 kg $CO_2$ to produce 1 kg apple fruit, and carbon dioxide was emitted 43.6% in the step of the manufacturing byproduct fertilizer, 1.3% in the step of the manufacturing single fertilizer, 4.7% in the step of the manufacturing composite fertilizer, 6.3% in the step of the manufacturing agri-chemicals, 14.6% in the step of the manufacturing fuel, 11.5% in the step of the fuel combustion, 17.7% of $N_2O$ emission by nitrogen application and 0.18% of disposal of agri-materials. It is needed for farmers to use fertilization recommendation based on soil testing (soil. rda.go.kr) because scientific fertilization is a major tools to reduce carbon dioxide of apple production. The fertilization recommendation could be also basic data in Measurable-ReporTablele-Verifiable (MRV) system for carbon footprint.

A study of Carbon Dioxide Emissions due to the Cloud computing security (클라우드 컴퓨팅 보안에 따른 이산화탄소 배출에 관한 연구)

  • Jeon, Jeong Hoon
    • Convergence Security Journal
    • /
    • v.14 no.4
    • /
    • pp.101-108
    • /
    • 2014
  • Recently, The cloud computing technology is emerging as an important issue in the world and the cloud computing has attracted much attention to the technology about carbon dioxide reduction. However, Unlike to the positive aspects of a cloud computing are included several security vulnerabilities. For this reason, the carbon dioxide reduction of a cloud computing technology has a differences. Therefore, this paper will be analyzed to the carbon dioxide emission factors of a cloud computing through the cloud case studies related $CO_2$ emissions and experiments measured of $CO_2$ emissions a security system. and In the future, this is expected to be utilized as a basis for the security design and performance improvement.

Development of Artificial Neural Network Model for Predicting Carbon Dioxide Emissions by Construction Equipment (인공신경망 모델 구축을 통한 건설장비별 이산화탄소 배출량 예측)

  • Im, Somin;Ro, Sangwoo;Kim, Hayoon;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.16-17
    • /
    • 2020
  • In this paper, we intended to present a model for estimating carbon dioxide emissions by work of construction equipment using Artificial Neural Network(ANN) analysis. In this study, data of excavators and trucks are classified according to the work carried out, and carbon dioxide emissions are predicted through ANN based on equipment information and work information. As a result, the effect of each model was validated, and a carbon dioxide emission prediction model was derived for each work. This has the expected effect of establishig an eco-friendly process plan using this model from the construction planning stage.

  • PDF

The Selection of Spoil-Bank for Reduction of Carbon Emission based on GIS Analysis (탄소배출량 저감을 위한 GIS분석기반의 사토장 선정)

  • Park, Dong Hyun;Kang, In Joon;Kim, Sang Suk;Han, Ki Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.3-9
    • /
    • 2012
  • The exhaustion of fuel and tremendous greenhouse gas emissions are caused by the sharp increase in the use of fossil fuel. Especially, accounting for over 25% of carbon dioxide emissions, Construction is main environmental problem. So, in this study, we applied network analysis in the selection of spoil-bank to reinforce the GIS to decrease carbon dioxide emissions in construction sites. As a result, we could calculate the expected carbon dioxide emission and transportation cost of the proposed sites by the shortest distance and the least amount of time. We found that if spoil-bank is chosen based on the result, carbon dioxide emissions will be decreased as much as we plant a pine tree. We can also decrease largely by considering and applying complex causes which affect carbon dioxide emissions in construction.

The Analysis of Carbon Dioxide Emission in Korea and Its Contribution to Global-Scale Average Carbon Dioxide Concentration (우리나라 이산화탄소의 배출량 및 전지구적 대기중 농도에 대한 기여도 분석)

  • 박일수;최덕일;최기덕;홍율기;김정수;정은영;마창민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.217-223
    • /
    • 1994
  • Carbon dioxide emission has been increased by 7% in an annual average toward 212.5 million tons in 1990 from 108.7 million tons in 1980. Among emissions in 1990, industry, residential / commercial, transportation, other and non-energy have occupied 91.12, 68.04, 42.13, 7.13 and 4.09 million tons respectively. The Korea-scenarios corresponding to those of IPCC that is Intergovernmental Panel on Climate Change (A : modest control of $CO_2$; B : stringent control of $CO_2$, C: shifting fuel to renewable and nuclear energy in the second half of the next century ; and D: shifting fuel to renewable and nuclear energy in the first half of the next century show that the global-scale contributions of atmospheric $CO_2$ concentration are 0.77, 0.64 and 0.78% in 2050 for cases A,B, and C respectively. In all cases, the contributions were smaller than 0.09 % in 1985.

  • PDF

Combustion Emission Gas Analysis & Hazard Assessment to the Litter Layer in Forest (임내 낙엽층의 연소 방출가스 분석 및 건강 위험성 평가)

  • Kim, Dong-Hyun;Lee, Myung-Bo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.358-364
    • /
    • 2009
  • 본 연구에서는 우리나라 주요 침엽수종인 소나무(Pinus densiflora)와 활엽수종인 굴참나무(Quercus variabilis)의 낙엽에 대해 FTIR(Fourier Transform Infrared) 분광계를 이용하여 배출 연소가스 종류 및 농도를 측정하였다. 실험결과 소나무와 굴참나무 낙엽에서 Carbon monoxide, Carbon dioxide, Acetic acid, Butyl acetate, Ethylene, Methane, Methanol, Nitrogen dioxide, Ammonia, Hydrogen Fluoride, Sulfur dioxide, Hydrogen bromide 등 13개 연소가스가 검출되었고 굴참나무 낙엽에서는 Nitrogen monoxide가 추가로 검출되었다. 방출된 연소가스의 전체 농도는 소나무 낙엽이 굴참나무 낙엽에 비해 4.5배 많이 검출되었다. 특히, 시간가중평균가스농도(TWA : Time-weighted average, ppm) 기준을 초과하는 연소가스는 Carbon monoxide, Carbon dioxide, Butyl acetate가 검출되었고 단시간노출기준(STEL : Short Term Exposure Limit, ppm) 기준을 초과하는 연소가스는 Carbon monoxide, Carbon dioxide로 소나무 및 굴참나무 모두에서 나타났다. 이에 산불에서의 낙엽층 지표화 연소시 전체 가스 방출량의 99% 이상을 차지하고 있는 Carbon monoxide, Carbon dioxide의 건강 위험성이 높은 것으로 나타났다. 하지만, 검출된 다른 건강 위험성 가스의 경우에도 연소물질의 양이 증가할수록 연소가스의 농도가 높아져 건강안정성에 해가 있을 것으로 판단되며 또한 검출된 연소가스 중 나무의 주요구성 원소가 아닌 Bromide, Fluoride 화합물에 대해서는 토양으로부터의 오염 또는 분석과정에서의 노이즈로 인한 검출 등에 대한 보다 면밀한 검토가 필요할 것으로 판단된다.

  • PDF